精英家教网 > 高中数学 > 题目详情
9.对任意函数f(x),x∈D,可按如图所示,构造一个数列发生器,其工作原理如下:
①输入数据x0∈D,经数列发生器输出x1=f(x0);
②若x1∉D,则数列发生器结束工作;若x1∈D,将x1反馈输入端,再输出x2=f(x1),并以此规律进行下去,现定义$f(x)=\frac{4x-2}{x+1}$.
(1)若输入${x_0}=\frac{49}{65}$,则由数列发生器产生数列{xn},写出数列{xn}的所有项;
(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值.

分析 (1)利用f(x)=$\frac{4x-2}{x+1}$,x0=$\frac{49}{65}$及工作原理,注意函数的定义域,直接可求得数列{xn}的只有三项;
(2)要数列发生器产生一个无穷的常数列,则有f(x)=$\frac{4x-2}{x+1}$=x,从而求出相应的初始数据x0的值;

解答 解:(1)∵函数f(x)的定义域D=(-∞,-1)∪(-1,+∞),
∴数列{xn}只有3项,xx=$\frac{11}{19}$,x2=$\frac{1}{5}$,x3=-1.
(2)令f(x)=$\frac{4x-2}{x+1}$=x,即x2-3x+2=0,
解得:x=2,或x=1,
故当x0=2或x0=1时,xn+1=$\frac{4{x}_{n}-2}{{x}_{n}+1}$=xn
所以,输入的初始数据x0=1时,得到常数列xn=1;
x0=2时,得到常数列xn=2.

点评 本题是数列与算法的简单结合,应搞清算法原理,将问题等价转化,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=x2-$\frac{1}{2}$lnx+1在其定义域内的一个子区间(a-2,a+2)内不是单调函数,则实数a的取值范围[2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)两条渐近线的夹角为60°,该双曲线的离心率为2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,主视图和俯视图为全等的等腰直角三角形,则该棱锥最长的棱长为(  )
A.$\frac{3}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.教育学家分析发现加强语文阅读理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲、乙两个同轨班级进行实验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面2×2列联表:(单位:人)
优秀人数非优秀人数总计
甲班22830
乙班81220
总计302050
(1)能否据此判断有97.5%的把握认为加强语文阅读理解训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学题所用的时间在5-7分钟,小刚正确解答一道数学题所用的时间在6-8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明先正确解答完的概率;
(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们的大题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是公差不为零的等差数列,a1=1,且a1,a2,a4成等比数列.
(1)求数列{an}的通项;
(2)求数列$\left\{{{2^{a_n}}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=100的不同整数解(x,y)的个数为(  )
A.400B.420C.440D.480

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若 n∈N且 n<20,则 (28-n)(29-n)…(34-n)等于(  )
A.A${\;}_{27-n}^{8}$B.A${\;}_{34-n}^{27-n}$C.A${\;}_{34-n}^{7}$D.A${\;}_{34-n}^{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,已知两定点$A(-\frac{1}{3}\;,\;0)$和$B({\frac{1}{3}\;,\;0})$,点M是平面内的动点,且$|{\overrightarrow{AB}+\overrightarrow{AM}}|+|{\overrightarrow{BA}+\overrightarrow{BM}}|=4$.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设F2(1,0),R(4,0),自点R引直线l交曲线E于Q,N两点,求证:射线F2Q与射线F2N关于直线x=1对称.

查看答案和解析>>

同步练习册答案