精英家教网 > 高中数学 > 题目详情

已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足

(1)求a的值;

(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;

(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且,则称b为数列{bn}的“上渐进值”,令,求数列{p1+p2+…+pn-2n}的“上渐进值”.

答案:
解析:

  解:(1)由已知,得  4分

  (2)由,∴,即,于是有,并且有

  ∴

  而n是正整数,则对任意n∈N都有

  ∴数列{an}是等差数列,其通项公式是  10分

  (3)∵

  ∴

  ;由n是正整数可得

  并且有

  ∴数列的“上渐进值”等于3  18分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(1)求a的值;
(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;
(3)令pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南汇区一模)已知,数列{an}有a1=a,a2=2,对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
n(an-a1)
2

(1)求a的值;
(2)求证数列{an}是等差数列;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且
lim
n→∞
bn=b
,则称b为数列{bn}的“上渐进值”,令pn=
Sn+2
Sn+1
+
Sn+1
Sn+2
,求数列{p1+p2+…+pn-2n}的“上渐进值”.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市西南师大附中高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知,数列{an}有a1=a,a2=2,对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足
(1)求a的值;
(2)求证数列{an}是等差数列;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且,则称b为数列{bn}的“上渐进值”,令,求数列{p1+p2+…+pn-2n}的“上渐进值”.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省无锡市高考数学模拟试卷(3)(解析版) 题型:解答题

已知,数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足
(1)求a的值;
(2)试确定数列{an}是不是等差数列,若是,求出其通项公式.若不是,说明理由;
(3)令,是否存在正整数M,使不等式p1+p2+…+pn-2n≤M恒成立,若存在,求出M的最小值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年上海市十校高三联考数学试卷(理科)(解析版) 题型:解答题

已知,数列{an}有a1=a,a2=2,对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足
(1)求a的值;
(2)求证数列{an}是等差数列;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b且,则称b为数列{bn}的“上渐进值”,令,求数列{p1+p2+…+pn-2n}的“上渐进值”.

查看答案和解析>>

同步练习册答案