精英家教网 > 高中数学 > 题目详情
12.已知∠Q的终边上有一点P(x,-1)(x≠0),且tan∠Q=-x,求sin∠Q+cos∠Q的值.

分析 依题意,tan∠Q=$\frac{-1}{x}$=-x⇒x=±1;再分x=1与x=-1两种情况讨论,即可求得sin∠Q+cos∠Q的值.

解答 解:∵tan∠Q=$\frac{-1}{x}$=-x(x≠0),
∴x2=1,x=±1;
当x=1时,sin∠Q=-$\frac{\sqrt{2}}{2}$,cos∠Q=$\frac{\sqrt{2}}{2}$,sin∠Q+cos∠Q=0;
当x=-1时,sinθ=-$\frac{\sqrt{2}}{2}$,cos∠Q=-$\frac{\sqrt{2}}{2}$,sin∠Q+cos∠Q=-$\sqrt{2}$.

点评 本题考查同角三角函数的定义及基本关系的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数$y=\frac{2}{x}$,当x由2变为1.5时,函数的增量为(  )
A.1B.2C.$\frac{1}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.过点P(0,1),且与点A(3,3)和B(5,-1)的距离相等的直线方程是(  )
A.y=1B.2x+y-1=0
C.y=1或2x+y-1=0D.2x+y-1=0或2x+y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在长方体ABCD-A1B1C1D1中,B1C和C1D与底面所成的角分别为60°和45°,则异面直线B1C和C1D所成角的正弦值为(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\frac{{\sqrt{10}}}{4}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为$\frac{6}{7}$,则口袋中白球的个数为(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在实数集R上的函数f(x)满足下列三个条件
①对任意的x∈R,都有f(x+4)=f(x).
②对于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函数f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
A.f(4.5)<f(6.5)<f(7)B.f(4.5)<f(7)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(7)<f(4.5)<f(6.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设X是一个离散型随机变量,其分布列为:
X-101
P$\frac{1}{2}$1-qq2-q
则q等于(  )
A.1B.1±$\frac{{\sqrt{2}}}{2}$C.1-$\frac{{\sqrt{2}}}{2}$D.1+$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=log4$\sqrt{x}$•log${\;}_{\sqrt{2}}$(2x)的值域用区间表示为[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设计一个程序,求一个数x的绝对值.

查看答案和解析>>

同步练习册答案