【题目】已知数列{an}满足a1+3a2+32a3+…+3n﹣1an= ,n∈N+ .
(1)求数列{an}的通项公式;
(2)设anbn=n,求数列{bn}的前n项和Sn .
【答案】
(1)解:∵数列{an}满足a1+3a2+32a3+…+3n﹣1an= ,n∈N+.
∴n=1时,a1= ;n≥2时,a1+3a2+32a3+…+3n﹣2an﹣1= .
可得3n﹣1an= ,∴an= .n=1时也成立.
∴an=
(2)解:anbn=n,∴bn=n3n.
∴数列{bn}的前n项和Sn=3+2×32+3×33+…+n3n,
3Sn=32+2×33+…+(n﹣1)3n+n3n+1,
∴﹣2Sn=3+32+…+3n﹣n3n+1= ﹣n3n+1,
解得Sn=
【解析】(1)利用递推关系即可得出.(2)anbn=n,bn=n3n . 利用“错位相减法”与等比数列的求和公式即可得出.
科目:高中数学 来源: 题型:
【题目】已知过双曲线C: =1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1 , k2 , k,若k1k2>k恒成立,则离心率e的取值范围为( )
A.1<e<
B.1<e≤
C.e>
D.e≥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点( ,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆x2+y2-4ax+2ay+20a-20=0.
(1)求证:对任意实数a,该圆恒过一定点;
(2)若该圆与圆x2+y2=4相切,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com