(本题满分14分)
已知函数f(x)=,若数列,满足,, ,
(1)求的关系,并求数列的通项公式;
(2)记, 若恒成立.求的最小值.
(1) bn= ()n-1+.(2) m的最小值为。
解析试题分析:(1)根据递推关系和已知的所求解的,构造那个结构特点的关系式,进而得到结论。(2)利用第一问的结论得到数列{bn-}是首项b1-=,公比为的等比数列,进而得到通项公式,并求解和式。
解:(1)∵,∴.………2
又,∴,.………3
∴代入化简得,………4 ∴
∴,………6∴数列{bn-}是首项b1-=,公比为的等比数列,
∴bn-= ()n-1,bn= ()n-1+.………………8
(2)Sn==…10
∴=≤=,………12∴的最大值为,又≤m,
∴m的最小值为………………………14
考点:本试题主要考查了数列通项公式和前n项和的求解的综合运用。
点评:解决该试题的关键是对于分式递推式,采用取倒数的方法得到递推关系式,并能结合分组求和的思想得到数列的 前n项和问题。
科目:高中数学 来源: 题型:解答题
(本小题满分16分)
已知数列是等差数列,数列是等比数列,且对任意的,都有.
(1)若的首项为4,公比为2,求数列的前项和;
(2)若.
①求数列与的通项公式;
②试探究:数列中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,, 为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列中,,且点在直线上.数列中,,,
(Ⅰ) 求数列的通项公式(Ⅱ)求数列的通项公式;
(Ⅲ)(理)若,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题14分)设是公比大于1的等比数列,为数列的前项和。
已知,且构成等差数列.
(1)求数列的通项公式.
(2)令,求数列的前项和.
(3),求数列的前项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com