精英家教网 > 高中数学 > 题目详情
9.下列各角中与-$\frac{π}{4}$终边相同的是(  )
A.-$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{7π}{4}$D.$\frac{3π}{4}$

分析 根据终边相同的角之间相差周角的整数倍,我们可以表示出与-$\frac{π}{4}$的角终边相同的角α的集合,分析题目中的四个答案,找出是否存在满足条件的k值,即可得到答案.

解答 解:与-$\frac{π}{4}$的角终边相同的角α的集合为{α|α=-$\frac{π}{4}$+2kπ,k∈Z}
当k=1时,α=$\frac{7π}{4}$,
故选:C.

点评 本题考查的知识点是终边相同的角,其中根据终边相同的角之间相差周角的整数倍,表示出与-$\frac{π}{4}$的角终边相同的角α的集合,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设抛物线y2=4x上的一点P到y轴的距离是4,则点P到该抛物线焦点的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(m,m+1),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.-1C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于平面向量,给出下列四个命题:
①单位向量的模都相等;
②对任意的两个非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,式子|$\overrightarrow{a}$+$\overrightarrow{b}$|<|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定成立;
③两个有共同的起点且相等的向量,其终点必定相同;
④若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$.
其中正确的命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为两平面向量,且|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{1}}$|=1,<$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$>=60°.
(1)若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{1}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$-6$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,求证:A,B,D三点共线;
(2)若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2λ$\overrightarrow{{e}_{\;}}$2,$\overrightarrow{b}$=λ$\overrightarrow{{e}_{\;}}$1-$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或白球的概率是(  )
A.0.3B.0.55C.0.75D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinα=$\frac{3}{5}$,α∈($\frac{π}{2}$,π)
(1)tan(α+π)的值;
(2)cos(α-$\frac{π}{2}$)sin(α+$\frac{3π}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若0<α<$\frac{π}{2}$,-π<β<-$\frac{π}{2}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=-$\frac{\sqrt{3}}{3}$,则cos(α+$\frac{β}{2}$)=(  )
A.-$\frac{5\sqrt{3}}{9}$B.$\frac{5\sqrt{3}}{9}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出如图所示的频率分布直方图,已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在[100,120]之间的学生人数是(  )
A.32B.24C.18D.12

查看答案和解析>>

同步练习册答案