若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=1,a2=2,an+2=4an+1-4an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,若数列{an+1-λan}为等比数列,求实数λ的值;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,求Sn=a1Cn1+a2Cn2+…+anCnn的值.