相关习题
 0  248479  248487  248493  248497  248503  248505  248509  248515  248517  248523  248529  248533  248535  248539  248545  248547  248553  248557  248559  248563  248565  248569  248571  248573  248574  248575  248577  248578  248579  248581  248583  248587  248589  248593  248595  248599  248605  248607  248613  248617  248619  248623  248629  248635  248637  248643  248647  248649  248655  248659  248665  248673  266669 

科目: 来源: 题型:填空题

14.如图,平面四边形EFGH的四个顶点分别在空间四边形ABCD的四条边上,若直线EF与GH相交,则它们的交点M必在直线AC上.

查看答案和解析>>

科目: 来源: 题型:填空题

13.给出以下四个判断:
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an},满足a1=2,an+1=$\frac{{a}_{n}}{2}$+$\frac{1}{{a}_{n}}$,求证:1<an<$\frac{3}{2}$+$\frac{1}{n}$.

查看答案和解析>>

科目: 来源: 题型:选择题

11.△ABC内接于以O为圆心,1为半径的圆,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则△AOB的面积=(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.在大街上,随机调查339名成人,有关吸烟、不吸烟、患支气管炎、不患支气管炎的数据如右表:根据表中数据,在犯错误的概率不超过0.01 的前提下判断吸烟与患支气管炎是否有关?
患慢性气管炎未患慢性气管炎总计
吸烟43162205
不吸烟13121134
合计56283339
附:临界值表
P(K2>k00.050.0250.010 0.005 0.001
k03.8415.0246.635 7.87910.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m.n∈R),则m2+n2-2m-2n+3的取值范围是$(\frac{3}{2},3)$.

查看答案和解析>>

科目: 来源: 题型:选择题

8.下列命题中不正确的是(其中l,m表示直线,α,β,γ表示平面)(  )
A.l⊥m,l⊥α,m⊥β⇒α⊥βB.l⊥m,l?α,m?β⇒α⊥βC.α⊥γ,β∥γ⇒α⊥βD.l∥m,l⊥α,m?β⇒α⊥β

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=$\frac{n({a}_{n}-{a}_{1})}{2}$.
(1)求a的值;
(2)试确定数列{an}是否是等差数列,若是,求出其通项公式,若不是,说明理由;
(3)对于数列{bn},假如存在一个常数b使得对任意的正整数n都有bn<b,且$\underset{lim}{n→∞}$bn=b,则称b为数列{bn}的“上渐近值”,令pn=$\frac{{S}_{n+2}}{{S}_{n+1}}$+$\frac{{S}_{n+1}}{{S}_{n+2}}$,求数列{p1+p2+…+pn-2n}的“上渐近值”.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知全集U=Z,A={x|x=4k-1,k∈Z},B={x|x=4k+1,k∈Z},指出A与∁UB,B与∁UA的关系.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,根据平面向量数量积的定义证明向量性质:|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|,并用该性质证明不等式:(mp+nq)2≤(m2+n2)(p2+q2

查看答案和解析>>

同步练习册答案