相关习题
 0  248914  248922  248928  248932  248938  248940  248944  248950  248952  248958  248964  248968  248970  248974  248980  248982  248988  248992  248994  248998  249000  249004  249006  249008  249009  249010  249012  249013  249014  249016  249018  249022  249024  249028  249030  249034  249040  249042  249048  249052  249054  249058  249064  249070  249072  249078  249082  249084  249090  249094  249100  249108  266669 

科目: 来源: 题型:解答题

7.已知两圆C1:(x+3)2+(y-1)2=4和C2:(x-4)2+(y-5)2=4.
(1)若过点(0,1)的直线l与两圆相交所得的弦相等,求直线l的方程;
(2)若过点(-1.5,3.5)存在两条互相垂直的直线l和m,它们分别与两圆相交所得的弦相等,求直线l和m的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$是(0,+∞)上的减函数,且对任意的m∈(0,e],n∈(e,+∞)有f($\frac{m+n}{2}$)<$\frac{f(m)+f(n)}{2}$,则实数a的取值范围是(-∞,-$\frac{1}{2e}$).

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,且an=Sn•Sn-1(n≥2),a1=$\frac{2}{9}$,则an=$\left\{\begin{array}{l}{\frac{2}{9},}&{n=1}\\{\frac{4}{(11-2n)(13-2n)},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=$\frac{1}{a}$•an2(a>0),求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:填空题

3.设a1=2,an+1=$\frac{2}{{a}_{n}+1}$,bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|-1,则b2014=5•22013-1.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设各项均为正数的数列{an}满足a1=2,an+2=an(an+1)${\;}^{-\frac{3}{2}}$(n∈N*),若a2=$\frac{1}{4}$,则猜想a2014的值为${2}^{{2}^{2013}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}+2\overrightarrow{b}$)=23.那么$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=2cos(2ωx+$\frac{π}{6}$)+$\sqrt{3}$的图象与直线y=-2+$\sqrt{3}$的相邻两个交点之间的距离为π.
(1)求ω的值;
(2)求函数f(x)在[0,2π]上的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=2lnx+a(x-$\frac{1}{x}$).
(1)若函数f(x)在(1,f(1))处的切线方程为y=4x-4,求实数a的值;
(2)若(1-x)f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}x|,0<x≤4}\\{{x}^{2}-10x+25,x>4}\end{array}\right.$,若a,b,c,d互不相等,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围为(  )
A.[24,25]B.(24,25)C.(0,25)D.[0,25]

查看答案和解析>>

同步练习册答案