相关习题
 0  249464  249472  249478  249482  249488  249490  249494  249500  249502  249508  249514  249518  249520  249524  249530  249532  249538  249542  249544  249548  249550  249554  249556  249558  249559  249560  249562  249563  249564  249566  249568  249572  249574  249578  249580  249584  249590  249592  249598  249602  249604  249608  249614  249620  249622  249628  249632  249634  249640  249644  249650  249658  266669 

科目: 来源: 题型:填空题

19.已知在直角坐标系xOy中,点P(0,$\sqrt{3}$),曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$,设直线l与曲线C的两个交点为A、B,则|PA|•|PB|的值为6.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.$(t为参数),曲线C:ρ=3.
(1)求直线l被曲线C所截得的弦长;
(2)求(1)中弦的中点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

17.求下列函数定积分.
(1)已知f(x)=4x3+4sinx,求${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$f(x)dx;
(2)已知f(x)=$\left\{\begin{array}{l}{{x}^{2},(x≤0)}\\{cosx-1,(x>0)}\end{array}\right.$,求${∫}_{-1}^{1}$f(x)dx.

查看答案和解析>>

科目: 来源: 题型:填空题

16.定积分${∫}_{0}^{1}$$\frac{1}{1+x}$dx的值为ln2.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知随机变量ξ的数学期望为E(ξ),方差为D(ξ),随机变量η=$\frac{ξ-Eξ}{\sqrt{Dξ}}$,则D(η)的值为(  )
A.0B.-1C.1D.$\sqrt{D(ξ)}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.某教辅集团进年要研究出版多种一轮用书,其中有A,B两种已经投入使用,经一学年使用过后,教辅团队为了调查书的质量与社会反响,特地选择某校高三的4个班进行调查,从各班抽取的样本人数如表:
班级
人数1234
(1)从10人中随机抽取2人,求这2人恰好来自同一班级的概率;
(2)从中这10名学生中,指定甲、乙、丙三人为代表,已知他们每人选择一种图书,其中选择A,B两种图书学习的概率分别是$\frac{1}{3}$,$\frac{2}{3}$,且他们选择A,B任一种图书都是相互独立的,设这三名学生中选择B的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

13.求极坐标方程1+ρ2sin2φ=0所表示的曲线.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知函数f(x)=x2${∫}_{0}^{1}$f(x)dx,则${∫}_{0}^{1}$f(x)dx=0.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知x∈(0,1),则f(x)=$\frac{{x}^{2}-{x}^{4}}{(1+{x}^{2})^{3}}$的最大值是$\frac{\sqrt{3}}{18}$;不等式$\frac{x}{\sqrt{1+{x}^{2}}}$+$\frac{1-{x}^{2}}{1+{x}^{2}}$>0的解集为(0,1).

查看答案和解析>>

科目: 来源: 题型:解答题

10.某市有三支广场舞队伍,已知A队有队员60人,B队有队员90人,C队有队员m人,现用分层抽样的方法从这三个广场舞队伍中随机抽取n名队员进行问卷调查,已知从A队中抽取的人数比从B队抽取的人数少1人.
(1)求从A队中抽取的人数;
(2)已知m=30,若从参与问卷调查的队员中抽取3人进行回访,求回访的3人来自于A队的人数X的分布列及数学期望.

查看答案和解析>>

同步练习册答案