相关习题
 0  249518  249526  249532  249536  249542  249544  249548  249554  249556  249562  249568  249572  249574  249578  249584  249586  249592  249596  249598  249602  249604  249608  249610  249612  249613  249614  249616  249617  249618  249620  249622  249626  249628  249632  249634  249638  249644  249646  249652  249656  249658  249662  249668  249674  249676  249682  249686  249688  249694  249698  249704  249712  266669 

科目: 来源: 题型:填空题

1.直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=2-t}\end{array}\right.$(t为参数),抛物线C的方程y2=2x,l与C交于P1、P2,求点A(0,2)到P1,P2两点的距离和是4$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知三棱台ABC-A′B′C′.
(1)把它分成一个三棱柱和一个多面体,并用字母表示;
(2)把它分成三个三棱锥,并用字母表示.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$-$\frac{1}{2}$,△ABC三个内角A,B,C的对边分别为a,b,c.
(1)求f(x)的单调递增区间及对称轴的方程;
(2)若f(B+C)=1,a=$\sqrt{3}$,b=1,求角C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

18.比较下列两个数的大小:
(1)sin512°和sin145°;
(2)cos760°和cos(-770°)

查看答案和解析>>

科目: 来源: 题型:选择题

17.参数方程$\left\{\begin{array}{l}{x=2+si{n}^{2}θ}\\{y=-1+2co{s}^{2}θ}\end{array}\right.$(θ为参数)化为普通方程是(  )
A.2x-y+5=0B.2x+y-5=0C.2x-y+5=0(2≤x≤3)D.2x+y-5=0(2≤x≤3)

查看答案和解析>>

科目: 来源: 题型:填空题

16.直线$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=2+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)被曲线x2-y2=1截得的弦长是4$\sqrt{2}$-2$\sqrt{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=2sin(x+$\frac{π}{2}$)sin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(1)求f(x)的最小正周期;
(2)当α∈[0,π]时,若f(α)=1,求α的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在平面直角坐标系xOy中,已知圆锥曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),若直线l过曲线C的焦点且倾斜角为60°,则直线l被圆锥曲线C所截得的线段的长度是3.2.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知向量$\overrightarrow{m}$=(1,$\sqrt{3}$sinωx+cosωx),$\overrightarrow{n}$=(f(x)+$\frac{1}{2}$,-cosωx),其中ω>0,且$\overrightarrow{m}$⊥$\overrightarrow{n}$,又f(x)的一条对称轴为x=$\frac{2π}{3}$,当ω取最小值时.
(1)求f(x)的单调递增区间;
(2)在△ABC中,若f(A)=$\frac{\sqrt{3}}{2}$,求sinB+sinC的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=16{t}^{2}-9}\end{array}\right.$(t为参数),倾斜角等于$\frac{2π}{3}$的直线l经过P,在以原点O为极点,x轴正半轴为极轴的极坐标系中,点P的极坐标为(1,$\frac{π}{2}$)
(1)求点P的直角坐标;
(2)设l与曲线C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案