相关习题
 0  249788  249796  249802  249806  249812  249814  249818  249824  249826  249832  249838  249842  249844  249848  249854  249856  249862  249866  249868  249872  249874  249878  249880  249882  249883  249884  249886  249887  249888  249890  249892  249896  249898  249902  249904  249908  249914  249916  249922  249926  249928  249932  249938  249944  249946  249952  249956  249958  249964  249968  249974  249982  266669 

科目: 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F1,F2分别是它的左、右焦点,A是它的右顶点,过点F1作一条斜率为k的直线交双曲线于异于顶点的两点M、N,若∠MAN=90°,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.函数f(x)=log2(2$\sqrt{3}$sinxcosx+2cos2x)的定义域和值域.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=cos($\frac{π}{3}$+x)cos($\frac{π}{3}$-x)-sinxcosx+$\frac{1}{4}$.
(1)求函数f(x)的对称中心及在[-$\frac{π}{4}$,$\frac{π}{4}$]的取值范围;
(2)若△ABC为非直角三角形,a,b,c分别为A,B,C所对的边,f(A)=-$\frac{1}{2}$,b=1,S△ABC=2,求$\frac{a+b}{sinA+sinB}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在四棱锥P-ABCD中,已知侧面PAD为等腰三角形,底面ABCD为直角梯形,AB∥CD,∠ABC=∠APD=90°,侧面PAD⊥底面ABCD,且AB=4,AP=PD=BC=CD=2.
(1)求异面直线PA与BD所成角的大小;
(2)设点E在侧棱PB上,若二面角E-AD-C的大小为$\frac{π}{4}$,求BE的长.

查看答案和解析>>

科目: 来源: 题型:选择题

17.函数y=${log}_{\frac{1}{2}}$(x+$\frac{1}{x-1}$+1)(x>1)的最大值是(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目: 来源: 题型:解答题

16.在四棱锥P-ABCD中,∠ABC=$\frac{π}{2}$,∠BAC=∠CAD=$\frac{π}{3}$,PA⊥平面ABCD,E为PD的中点,PA=2AB=2,CD=2$\sqrt{3}$.
(1)若F为PC的中点,求证:平面PAC⊥平面AEF;
(2)求平面EAC与平面DAC夹角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图所示,在四棱锥A-BCDE中,AE⊥面EBCD且四边形EBCD是菱形,∠BED=120°,AE=BE=2,F是BC上的动点.
(1)当F是BC的中点时,求证:平面AEF⊥平面ABC;
(2)当点F在由B向C移动的过程中能否存在一个位置使得二面角A-FD-E的余弦值是$\frac{\sqrt{3}}{\sqrt{10}}$,若存在,求出BF的长,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,多面体A1B1-ABC中,△ABC与△AA1C都是边长为2的正三角形,四边形ABB1A1是平行四边形,且平面A1AC⊥平面ABC.
(1)求证:A1B⊥AC1
(2)在线段BB1上是否存在点M,使得过CM的平面与直线AB平行,且与底面ABC所成的角为45°?若存在,请确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知双曲线x2-$\frac{{y}^{2}}{3}$=1上有一点Q(3,2),F2为右焦点,双曲线上一点M,使得MQ+MF2的值最小,求M的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

12.数列{an}满足Sn=2n-an(n∈N*
(1)计算a1,a2,a3,a4,由此猜想通项公式an,并用数学归纳法证明此猜想;
(2)若数列{bn}满足bn=2n-1an,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案