相关习题
 0  249933  249941  249947  249951  249957  249959  249963  249969  249971  249977  249983  249987  249989  249993  249999  250001  250007  250011  250013  250017  250019  250023  250025  250027  250028  250029  250031  250032  250033  250035  250037  250041  250043  250047  250049  250053  250059  250061  250067  250071  250073  250077  250083  250089  250091  250097  250101  250103  250109  250113  250119  250127  266669 

科目: 来源: 题型:解答题

18.已知点A,B分别在射线CM,CN(不含端点C)上运动,∠MCN=$\frac{2π}{3}$,在△ABC中,角A,B,C所对的边分别是a,b,c
(1)若a,b,c依次成等差数列,且公差为2,求c的值:
(2)若c=$\sqrt{3}$,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.设曲线y=(ax-1)ex在点A(x0,y0)处的切线为l1,曲线y=(1-x)e-x在点B(x0,y1)处的切线为l2,若存在x0∈[0,$\frac{3}{2}$],使得l1⊥l2,则实数a的取值范围是(  )
A.(-∞,1]B.($\frac{1}{2}$,+∞)C.(1,$\frac{3}{2}$)D.[1,$\frac{3}{2}$]

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知△ABC的角A,B,C所对的边分别为a,b,c,∠C=90°,则$\frac{a+b}{c}$的取值(  )
A.(0,2)B.$({0,\sqrt{2}}]$C.$({1,\sqrt{2}}]$D.$[{1,\sqrt{2}}]$

查看答案和解析>>

科目: 来源: 题型:选择题

15.设a,b为实数,若复数$\frac{1+2i}{a+bi}$=1+i,则(  )
A.a=1,b=3B.a=3,b=1C.a=$\frac{1}{2}$,b=$\frac{3}{2}$D.a=$\frac{3}{2}$,b=$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

14.校团委组织“中国梦,我的梦”知识演讲比赛活动,现有4名选手参加决赛,若每位选手都可以从4个备选题目中任选出一个进行演讲,则恰有一个题目没有被这4位选手选中的情况有144种.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若函数y=f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是区间[-2,2]上的“平均值函数”,O就是它的均值点.
(I)若函数f(x)=x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是(0,2).
(II)若函数f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,要使得lnx°<$\frac{m}{{\sqrt{ab}}}$恒成立,参数m的取值范围是[1,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

12.函数y=$\frac{1}{{\sqrt{{{log}_{0.5}}(x-1)}}}$的定义域为(1,2).

查看答案和解析>>

科目: 来源: 题型:选择题

11.设函数f(x)=loga|x+b|在定义域内具有奇偶性,f(b-2)与f(a+1)的大小关系是(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能确定

查看答案和解析>>

科目: 来源: 题型:选择题

10.函数y=ax-5+1(a>0且a≠1)的图象必经过定点(  )
A.(0,1)B.(5,1)C.(5,2)D.(1,5)

查看答案和解析>>

科目: 来源: 题型:选择题

9.下列各组函数中,表示同一函数的是(  )
A.f(x)=$\root{5}{{x}^{5}}$与f(x)=$\sqrt{{x}^{2}}$B.y=x与$y=\root{3}{x^3}$
C.$y=\frac{(x-1)(x+3)}{x-1}$与y=x+3D.y=1与y=x0

查看答案和解析>>

同步练习册答案