相关习题
 0  250225  250233  250239  250243  250249  250251  250255  250261  250263  250269  250275  250279  250281  250285  250291  250293  250299  250303  250305  250309  250311  250315  250317  250319  250320  250321  250323  250324  250325  250327  250329  250333  250335  250339  250341  250345  250351  250353  250359  250363  250365  250369  250375  250381  250383  250389  250393  250395  250401  250405  250411  250419  266669 

科目: 来源: 题型:填空题

13.一个几何体的三视图如图所示,则该几何体的表面积等于64+6$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知程序框图如图所示,则该程序框图的功能是(  )
A.求数列{$\frac{1}{n}$}的前11项和(n∈N*B.求数列{$\frac{1}{2n}$}的前11项和(n∈N*
C.求数列{$\frac{1}{n}$}的前12项和(n∈N*D.求数列{$\frac{1}{2n}$的前12项和(n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=$\frac{\sqrt{2}}{2}A{A}_{1}$,E是棱A1A的中点,F为棱CC1上的一动点.
(Ⅰ)若C1E∥平面ABF,求$\frac{{C}_{1}F}{{C}_{1}C}$的值;
(Ⅱ)在(Ⅰ)的条件下,求证:A1C⊥平面ABF.

查看答案和解析>>

科目: 来源: 题型:填空题

10.对于函数y=f(x),x∈D,若对任意的x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=M,则称函数f(x)在D上的几何平均数为M,已知f(x)=x3-x2+1,x∈[1,2],则函数f(x)=x3-x2+1在[1,2]上的几何平均数M=$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.设l,m是两条不同的直线,α是一个平面,给出以下命题:
①若l⊥m,m?α,则l⊥α
②若l⊥α,l∥m,则m⊥α
③若l∥α,m?α,则l∥m
④若l∥α,m∥α,则l∥m.
其中,正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:填空题

7.执行如图所示的程序框图,若输入k=10,则输出的S为1023

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知F1,F2分别是中心在坐标原点,对称轴为做标轴的双曲线C的左、右焦点,过F2的直线l与双曲线的右支交于A,B两点,I1,I2分别为△AF1F2,△BF1F2的内心,若双曲线C的离心率为2,|I1I2|=$\frac{9}{2}$,直线l的倾斜角的正弦值为$\frac{8}{9}$,则双曲线C的方程为(  )
A.x${\;}^{2}+\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{48}$=1C.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知数列{an}共有2k(k≥2,k∈Z)项,a1=1,前n项和为Sn,前n项乘积为Tn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中a=2${\;}^{\frac{2}{2k-1}}$,数列{bn}满足bn=log2$\root{n}{{T}_{n}}$,
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若|b1-$\frac{3}{2}$|+|b2-$\frac{3}{2}$|+…+|b2k-1-$\frac{3}{2}$|+|b2k-$\frac{3}{2}$|≤$\frac{3}{2}$,求k的值.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知函数f(x)=$\frac{1}{x+1}$,点O为坐标原点,点An(n,f(n))(n∈N+),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与i的夹角,则$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+…+$\frac{cos{θ}_{9}}{sin{θ}_{9}}$=$\frac{9}{10}$.

查看答案和解析>>

同步练习册答案