相关习题
 0  250226  250234  250240  250244  250250  250252  250256  250262  250264  250270  250276  250280  250282  250286  250292  250294  250300  250304  250306  250310  250312  250316  250318  250320  250321  250322  250324  250325  250326  250328  250330  250334  250336  250340  250342  250346  250352  250354  250360  250364  250366  250370  250376  250382  250384  250390  250394  250396  250402  250406  250412  250420  266669 

科目: 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,首项为b,若存在非零常数a,使得(1-a)Sn=b-an+1对一切n∈N*都成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)问是否存在一组非零常数a,b,使得{Sn}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在Rt△BEC中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE,CE为边向Rt△BEC外作正△EBA和正△CED.
(Ⅰ)求线段AD的长;
(Ⅱ)比较∠ADC和∠ABC的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设所有方程可以写成(x-1)sinα-(y-2)cosα=1(α∈[0,2π])的直线l组成的集合记为L,则下列说法正确的是②③④;
①直线l的倾斜角为α;
②存在定点A,使得对任意l∈L都有点A到直线l的距离为定值;
③存在定圆C,使得对任意l∈L都有直线l与圆C相交;
④任意l1∈L,必存在唯一l2∈L,使得l1∥l2
⑤任意l1∈L,必存在唯一l2∈L,使得l1⊥l2

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知A(1,0),P,Q是单位圆上的两动点且满足$\overrightarrow{OP}⊥\overrightarrow{OQ}$,则$\overrightarrow{OA}•\overrightarrow{OP}$+$\overrightarrow{OA}•\overrightarrow{OQ}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

19.若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=5.

查看答案和解析>>

科目: 来源: 题型:选择题

18.点集{(x,y)|(|x|-1)2+y2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是(  )
A.$\frac{16π}{3}+2\sqrt{3}$B.$\frac{16π}{3}+4\sqrt{3}$C.$\frac{24π}{3}+2\sqrt{3}$D.$\frac{24π}{3}+4\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知f(x)=$\left\{\begin{array}{l}{2x+1,}&{x≤0}\\{{x}^{2}-1,}&{x>0}\end{array}\right.$,则“f[f(a)]=1“是“a=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

16.如图框内的输出结果是(  )
A.2401B.2500C.2601D.2704

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f${\;}_{n}(x)={x}^{n}+(1-x)^{n},x∈(0,1),n∈{N}^{*}$.
(Ⅰ)求证:21-n≤fn(x)≤1;
(Ⅱ)令b${\;}_{n}=\frac{3-2lo{g}_{3}{f}_{n}(x)}{1-lo{g}_{3}{f}_{n}(x)}$,求证:b1•b2…bn$>\sqrt{{2}^{2n}(n+1)}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.将函数f(x)=sin2x-$\sqrt{3}x$(x>0)的所有极大值点按从小到大顺序依次排列,形成数列{xn},θn=x1+x2+…+xn,则下列命题正确的是①②④⑤(写出你认为正确的所有命题的序号)
①函数f(x)=sin2x-$\sqrt{3}$x在x=$\frac{π}{12}$处取得极大值;
②tanx${\;}_{n}=2-\sqrt{3}$;
③sinθn≤sinθn+1对于任意正整数n恒成立;
④存在正整数T,使得对于任意正整数n,都有sinθn=sinθn+T=0成立;
⑤n取所有的正整数,sinθn的最大值为1.

查看答案和解析>>

同步练习册答案