相关习题
 0  250558  250566  250572  250576  250582  250584  250588  250594  250596  250602  250608  250612  250614  250618  250624  250626  250632  250636  250638  250642  250644  250648  250650  250652  250653  250654  250656  250657  250658  250660  250662  250666  250668  250672  250674  250678  250684  250686  250692  250696  250698  250702  250708  250714  250716  250722  250726  250728  250734  250738  250744  250752  266669 

科目: 来源: 题型:选择题

20.函数f(x)=$\frac{1}{x}-x+{x^3}$的图象关于(  )
A.y轴对称B.直线y=x对称C.坐标原点对称D.直线y=-x对称

查看答案和解析>>

科目: 来源: 题型:解答题

19.数列{an}的前n项和为Sn,.Sn+an=-$\frac{1}{2}$n2-$\frac{3}{2}$n+1(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若cn=${(\frac{1}{2})^n}$-an,p=$\sum_{i=1}^{2013}{\frac{{c_i^2+{c_i}+1}}{{c_i^2+{c_i}}}}$,求不超过P的最大的整数值.

查看答案和解析>>

科目: 来源: 题型:选择题

18.下列能构成集合的是(  )
A.中央电视台著名节目主持人B.我市跑得快的汽车
C.正阳县所有的中学生D.正阳的高楼

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,当x=$\frac{π}{6}$时,f(x)取得最大值3.
(Ⅰ)求f(x)的解析式及对称中心;
(Ⅱ)说明此函数图象可由y=sinx的图象经怎样的变换得到;
(Ⅲ)求f(x)在区间x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

16.(1)化简$\frac{sin(2π-α)cos(π+α)}{cos(α-π)cos(\frac{π}{2}-α)}$
(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{37}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,目标函数z=x+2y的最小值是(  )
A.11B.9C.5D.1

查看答案和解析>>

科目: 来源: 题型:选择题

13.设f,g都是由A到A的映射,其对应法则如下表(从上到下)
表1 映射f的对应法则
 原像 1
 像 3
表2 映射g的对应法则
 原像 1
 像 41
则与f(g(1))相同的是(  )
A.g(f(3))B.g(f(2))C.g(f(4))D.g(f(1))

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,$\overrightarrow{AB}$=($\sqrt{3}$,-1),$\overrightarrow{BC}$=(1,-$\sqrt{3}$),则cosB=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{4}$D.0

查看答案和解析>>

科目: 来源: 题型:选择题

11.将函数y=$\sqrt{3}$sin2x-cos2x的图象向右平移$\frac{π}{4}$个单位长度,所得图象对应的函数为g(x),以下选项正确的是(  )
A.有最大值,最大值为$\sqrt{3}$+1B.对称轴方程是x=$\frac{7π}{12}$+kπ,k∈Z
C.在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增D.是周期函数,周期T=$\frac{π}{2}$

查看答案和解析>>

同步练习册答案