相关习题
 0  250874  250882  250888  250892  250898  250900  250904  250910  250912  250918  250924  250928  250930  250934  250940  250942  250948  250952  250954  250958  250960  250964  250966  250968  250969  250970  250972  250973  250974  250976  250978  250982  250984  250988  250990  250994  251000  251002  251008  251012  251014  251018  251024  251030  251032  251038  251042  251044  251050  251054  251060  251068  266669 

科目: 来源: 题型:解答题

10.对于函数f(x)、g(x),存在函数h(x),使得f(x)=g(x)•h(x),则称f(x)是g(x)的“h(x)关联函数”.
(1)已知f(x)=sinx,g(x)=cosx,是否存在定义域为R的函数h(x),使得f(x)是g(x)的“h(x)关联函数”?若存在,写出h(x)的解析式;若不存在,请说明理由;
(2)已知函数f(x)、g(x)的定义域为[1,+∞),当x∈[n,n+1)时,f(x)=2n-1sin$\frac{x}{n}$-1,若存在函数h1(x)及h2(x),使得f(x)是g(x)的“h1(x)关联函数”,且g(x)是f(x)的“h2(x)关联函数”,求方程g(x)=0的解.

查看答案和解析>>

科目: 来源: 题型:选择题

9.在△ABC中,下列式子与$\frac{sinA}{a}$的值相等的是(  )
A.$\frac{b}{c}$B.$\frac{sinB}{sinA}$C.$\frac{sinC}{c}$D.$\frac{c}{sinC}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=ex+ax.
(1)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;
(2)若对任意实数x>0,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设x=m和x=n是函数f(x)=lnx+$\frac{1}{2}{x}^{2}$-(a+2)x的两个极值点,其中m<n,a∈R.
(1)若曲线y=f(x)在点P(1,f(1))处的切线垂直于y轴,求实数a的值;
(2)求f(m)+f(n)的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上表补充完整(不用写计算过程);
(2)请问有多大的把握认为喜爱打篮球与性别有关?说明你的理由.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:解答题

5.求解不等式:
(1)$\frac{9x-5}{{x}^{2}-5x+6}≤-2$
(2)|2x+1|>|5-x|

查看答案和解析>>

科目: 来源: 题型:填空题

4.复平面内复数z满足|z-1|=4,则|z|的最大值和最小值分别是5和3.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知tan(-α-$\frac{4}{3}$π)=-5,则tan($\frac{π}{3}$+α)的值为(  )
A.5B.-5C.±5D.不确定

查看答案和解析>>

科目: 来源: 题型:解答题

2.某产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
x24568
y34657
(1)画出散点图
(2)求回归直线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在△ABC中,记角A,B,C的对边为a,b,c,角A为锐角,设向量$\overrightarrow m$=(cosA,sinA),$\overrightarrow n$=(cosA,-sinA),且$\overrightarrow m$•$\overrightarrow n$=$\frac{1}{2}$
(I)求角A的大小及向量$\overrightarrow m$与$\overrightarrow n$的夹角;
(II)若a=$\sqrt{5}$,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案