相关习题
 0  250995  251003  251009  251013  251019  251021  251025  251031  251033  251039  251045  251049  251051  251055  251061  251063  251069  251073  251075  251079  251081  251085  251087  251089  251090  251091  251093  251094  251095  251097  251099  251103  251105  251109  251111  251115  251121  251123  251129  251133  251135  251139  251145  251151  251153  251159  251163  251165  251171  251175  251181  251189  266669 

科目: 来源: 题型:选择题

6.定义在R上的奇函数y=f(x)满足f(3)=0,且当x>0时,不等式f(x)>-xf′(x)恒成立,则函数g(x)=xf(x)+lg|x+1|的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

5.计算$cos\frac{π}{3}$-$tan\frac{π}{4}$+$\frac{3}{4}ta{n^2}\frac{π}{6}$-$sin\frac{π}{6}$+$co{s^2}\frac{π}{6}$的结果为(  )
A.-$\frac{1}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.0D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知cosx+sinx=$\frac{{3\sqrt{2}}}{5}$,那么sin2x=(  )
A.$\frac{18}{25}$B.$-\frac{7}{25}$C.$±\frac{24}{25}$D.$\frac{7}{25}$

查看答案和解析>>

科目: 来源: 题型:解答题

3.(1)设函数f(x)=ax2+bx+c(a≠0)中,a,b,c均为整数,且f(0),f(1)均为奇数.求证:f(x)=0无整数根.  
(2)已知a,b,c∈R+,a+b+c=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9.

查看答案和解析>>

科目: 来源: 题型:解答题

2.(1)求证:$\sqrt{3}$+1<2$\sqrt{2}$;
(2)求证:$\sqrt{a}$-$\sqrt{a-1}$<$\sqrt{a-2}$-$\sqrt{a-3}$,其中a≥3.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在用数学归纳法证明等式$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$时,当n=1左边所得的项是$\frac{1}{2}$;从”k→k+1”需增添的项是$\frac{1}{(k+1)(k+2)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如果命题P(n)对于n=1成立,同时,如果n=k成立,那么对于n=k+2也成立.这样,下述结论中正确的是(  )
A.P(n)对于所有的自然数n成立B.P(n)对于所有的正奇数n成立
C.P(n)对于所有的正偶数n成立D.P(n)对于所有大于3的自然数n成立

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知:函数f(x)=sin2x+$\sqrt{3}cosxcos(\frac{π}{2}-x)$.
(Ⅰ)求函数f(x)的对称中心及对称轴方程;
(Ⅱ)当$x∈[0,\frac{7π}{12}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数f(x)=$\sqrt{3}$sinωx+cosωx-1(ω>0),且满足相邻两个最大值间的距离为π;
(1)求ω
(2)若y=f(x)的图象向右平移a(a>0)个单位,图象再向上移动一个单位得到y=g(x)的图象,且y=g(x)为奇函数,求a的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知a=$\int_0^{\frac{π}{6}}{cosxdx}$,则${(x+\frac{a}{x})^8}$的展开式中的常数项是$\frac{35}{8}$.

查看答案和解析>>

同步练习册答案