相关习题
 0  251158  251166  251172  251176  251182  251184  251188  251194  251196  251202  251208  251212  251214  251218  251224  251226  251232  251236  251238  251242  251244  251248  251250  251252  251253  251254  251256  251257  251258  251260  251262  251266  251268  251272  251274  251278  251284  251286  251292  251296  251298  251302  251308  251314  251316  251322  251326  251328  251334  251338  251344  251352  266669 

科目: 来源: 题型:解答题

2.为了测量河对岸两个建筑物C、D之间的距离,在河岸边取点A、B,∠BAC=45°,∠DAC=75°,∠ABD=30°,∠DBC=45°,AB=$\sqrt{3}$千米,A、B、C、D在同一个平面内,试求C、D之间的距离.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在△ABC中,AB=AC=2,BC=2$\sqrt{3}$,点D在BC边上,∠ADC=45°,则AD的长度为$\sqrt{2}$;角C=30°.

查看答案和解析>>

科目: 来源: 题型:选择题

20.从6名同学中选出2名参加某一项活动,有(  )种不同的选法.
A.30B.36C.15D.40

查看答案和解析>>

科目: 来源: 题型:选择题

19.若输出k的值为6,则判断框内可填入的条件是(  )
 
A.s>$\frac{1}{2}$B.s>$\frac{3}{5}$C.s>$\frac{7}{10}$D.s>$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线均与圆C:x2+y2-6y+5=0相切,且双曲线的焦距为6,则该双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目: 来源: 题型:解答题

17.观察下列等式:
①sin210°+cos240°+sin10°cos40°=$\frac{3}{4}$;
②sin26°+cos236°+sin6°cos36°=$\frac{3}{4}$.
由上面两题的结构规律,你是否能提出一个猜想?并证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:填空题

16.函数f1(x)=x,f2(x)=x-$\frac{{x}^{3}}{6}$,f3(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$,f4(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$,f5(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$+$\frac{{x}^{9}}{362880}$,依次称为f(x)=sinx在[0,π]上的第1项、2项、3项、4项、5项多项式逼近函数.以此类推,请将f(x)=sinx的n项多项式逼近函数fn(x)在横线上补充完整:fn(x)=$x-\frac{x^3}{3!}+\frac{x^5}{5!}-…+{(-1)^{n-1}}\frac{{{x^{2n-1}}}}{(2n-1)!}$.

查看答案和解析>>

科目: 来源: 题型:选择题

15.在平面直角坐标系中,x轴正半轴上有5个点,y轴正半轴上有3个点,将x轴上的5个点和y轴上的3个点连成15条线段,这15条线段在第一象限内的交点最多有(  )
A.30个B.35个C.20个D.15个

查看答案和解析>>

科目: 来源: 题型:填空题

14.设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是$[-\sqrt{5}\;,\;\sqrt{5}]$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图为正方体ABCD-A1B1C1D1的平面展开图,其中E、M、N分别为A1D1、BC、CC1的中点,
(Ⅰ) 作出该正方体的水平放置直观图;
(Ⅱ) 求证:平面BEC1∥平面D1MN.

查看答案和解析>>

同步练习册答案