相关习题
 0  251254  251262  251268  251272  251278  251280  251284  251290  251292  251298  251304  251308  251310  251314  251320  251322  251328  251332  251334  251338  251340  251344  251346  251348  251349  251350  251352  251353  251354  251356  251358  251362  251364  251368  251370  251374  251380  251382  251388  251392  251394  251398  251404  251410  251412  251418  251422  251424  251430  251434  251440  251448  266669 

科目: 来源: 题型:解答题

20.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,
(Ⅰ) 求证:AC⊥BD;
(Ⅱ)若平面ABD⊥平面CBD,且BD=$\frac{5}{2}$,求二面角C-AD-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知抛物线C:x2=16y的焦点为F,直线l过点F交抛物线C于A、B两点.
(1)设A(x1,y1),B(x2,y2),求$\frac{1}{y_1}+\frac{1}{y_2}$的取值范围;
(2)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知正三棱锥的高为1,底面边长为2$\sqrt{6}$,求这个正三棱锥的体积和表面积.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=$\frac{1}{2}$AD.
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求锐二面角A-CD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.设抛物线C:y2=4x,过定点(m,0)的直线l与抛物线C交于A、B两点,连结A及抛物线顶点O的直线与准线交于点B′,直线BO与准线交于点A′,且AA′与BB′均平行于x轴.
(1)求m的值;
(2)求四边形ABB′A′面积的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

15.有一种圆柱体形状的笔筒,底面半径为4cm,高为12cm.现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果每0.5kg涂料可以涂1m2,那么为这批笔筒涂色约需涂料3.52kg.(保留两位小数)

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图,在透明塑料制成的长方体ABCD-A′B′C′D′容器内灌进一些水,将容器底面一边BC固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状;
②水面四边形EFGH的面积不改变;
③棱A′D′始终与水面EFGH平行;
④当E∈AA′时,AE+BF是定值.
其中所有正确的命题的序号是①③④.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2$\sqrt{2}$,∠PAB=60°.
(1)证明AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的正切值;
(3)求二面角P-BD-A的正切值.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知点P(x,y,z)到原点的距离为1,则x,y,z所满足的关系式为x2+y2+z2=1.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e∈[$\sqrt{2}$,2],则其渐近线的倾斜角的取值范围是(  )
A.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{3π}{4}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{6}$]C.[$\frac{π}{6}$,$\frac{π}{4}$]∪[$\frac{4π}{3}$,$\frac{5π}{6}$]D.[$\frac{π}{4}$,$\frac{π}{3}$]∪[$\frac{2π}{3}$,$\frac{5π}{5}$]

查看答案和解析>>

同步练习册答案