相关习题
 0  251582  251590  251596  251600  251606  251608  251612  251618  251620  251626  251632  251636  251638  251642  251648  251650  251656  251660  251662  251666  251668  251672  251674  251676  251677  251678  251680  251681  251682  251684  251686  251690  251692  251696  251698  251702  251708  251710  251716  251720  251722  251726  251732  251738  251740  251746  251750  251752  251758  251762  251768  251776  266669 

科目: 来源: 题型:填空题

16.设a=3${\;}^{\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log2$\frac{1}{3}$,则a,b,c大小关系是a>b>c.

查看答案和解析>>

科目: 来源: 题型:选择题

15.函数f(x)是偶函数且满足f(x+2)=-f(x),当x∈[0,2]时,f(x)=x-1,则不等式xf(x)<0在[-2,3]上的解集为(  )
A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-2,-1)∪(0,1)

查看答案和解析>>

科目: 来源: 题型:选择题

14.为了纪念抗日战争胜利70周年,从甲、乙、丙等5名候选民警中选2名作为阅兵安保人员,为9月3号的阅兵提供安保服务,则甲、乙、丙三人中有2人被选中的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{10}$C.$\frac{3}{20}$D.$\frac{1}{20}$

查看答案和解析>>

科目: 来源: 题型:填空题

13.比较大小:($\frac{4}{5}$)0.5<($\frac{9}{10}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

12.对于数列{an},若?m,n∈N*(m≠n),均有$\frac{{a}_{m}-{a}_{n}}{m-n}≥t$(t为常数),则称数列{an}具有性质P(t)
(1)若数列{an}的通项公式为an=n2,具有性质P(t),则t的最大值为3
(2)若数列{an}的通项公式为an=n2-$\frac{a}{n}$,具有性质P(7),则实数a的取值范围是a≥8.

查看答案和解析>>

科目: 来源: 题型:选择题

11.设复数z=1+i(i是虚数单位),则复数z+$\frac{1}{z}$的虚部是(  )
A.$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{3}{2}$D.$\frac{3}{2}$i

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)定义域是$\{x\left|x\right.≠\frac{t}{2},t∈Z,x∈R\}$,且f(x)+f(2-x)=0,f(x+1)=-$\frac{1}{f(x)}$,当-1<x<-$\frac{1}{2}$时,f(x)=-2-x
(Ⅰ)证明:f(x)为奇函数;
(Ⅱ)求f(x)在$(\frac{1}{2},1)$上的表达式;
(Ⅲ)是否存在正整数t,使得$x∈(3t+\frac{1}{2},3t+1)$时,log2f(x-3t)>x2-2tx-3t有解,若存在求出t的值,若不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.为增加产品利润,某工厂想投入资金对机器进一步改造升级,经过市场调查,利润增加值y万元与投入x万元之间满足:y=$\frac{41}{40}x-t{x^2}-ln\frac{x}{10}$,x∈(1,m],当x=10时,y=9.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求利润增加值y取得最大时对应的x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=ax2-2x+1.
(1)试讨论函数f(x)的单调性;
(2)若$\frac{1}{3}$≤a≤1,且f(x)在[1,3]上的最大值为M(a),最小值为N(a),令g(a)=M(a)-N(a),求g(a)的表达式;
(3)在(2)的条件下,求g(a)的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且Sn2-2Sn-an•Sn+1=0,n∈N*
(1)求a1的值;
(2)证明数列{$\frac{1}{{S}_{n}-1}$}是等差数列;
(3)已知bn=$\frac{n+1}{n+2}$Sn(n∈N+),求数列{bn}列的前2015项之积.

查看答案和解析>>

同步练习册答案