相关习题
 0  251621  251629  251635  251639  251645  251647  251651  251657  251659  251665  251671  251675  251677  251681  251687  251689  251695  251699  251701  251705  251707  251711  251713  251715  251716  251717  251719  251720  251721  251723  251725  251729  251731  251735  251737  251741  251747  251749  251755  251759  251761  251765  251771  251777  251779  251785  251789  251791  251797  251801  251807  251815  266669 

科目: 来源: 题型:选择题

8.方程x${\;}^{\frac{1}{3}}$=($\frac{1}{2}$)x的解所在的区间是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,1)D.(1,2)

查看答案和解析>>

科目: 来源: 题型:选择题

7.容量为20的样本数据,分组后的频数如下表:
分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)
频数234542
则样本数据落在区间[40,70)的频率为(  )
A.0.35B.0.45C.0.55D.0.65

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(其中ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,则g(x)的单调递减区间是(  )
A.[kπ,$\frac{π}{2}$+kπ],k∈ZB.[-$\frac{π}{2}$+kπ,kπ],k∈Z
C.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ],k∈ZD.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ],k∈Z

查看答案和解析>>

科目: 来源: 题型:填空题

5.若正四棱柱底面边长为3,高为5,则侧面积为60.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{n{a}_{n}}{(n+1)(n{a}_{n}+1)}$(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)记Sn为数列{an}的前n项和,bn=(1-$\frac{{S}_{n}}{{S}_{n+1}}$)$\frac{1}{\sqrt{{S}_{n+1}}}$,求证:b1+b2+…+bn$<\frac{4}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知正项等比数列{an}的前n项和为Sn,若-3,S5,S10成等差数列,则S15-S10的最小值为(  )
A.8B.9C.10D.12

查看答案和解析>>

科目: 来源: 题型:选择题

2.过不重合的A(m2+2,m2-3),B(3-m-m2,2m)两点的直线l倾斜角为45°,则m的取值为(  )
A.m=-1B.m=-2C.m=-1或2D.m=l或m=-2

查看答案和解析>>

科目: 来源: 题型:解答题

1.在数列{an},{bn}中,{an}的前n项和为Sn,点(n,Sn)在函数y=x2+2x的图象上.{bn}满足$\frac{{b}_{n+1}}{{b}_{n}}$=2,b1=2
(1)求{an},{bn}的通项公式;
(2)令Cn=an•bn,求数列Cn的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知定义在R上的奇函数f(x),满足2016f(-x)<f′(x)恒成立,且f(1)=e-2016,则下列结论正确的是(  )
A.f(2016)<0B.f(2016)<e${\;}^{-201{6}^{2}}$
C.f(2)<0D.f(2)>e-4032

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知集合A={x|1og2x<2},B=$\left\{{x|\frac{1}{3}<{3^x}<\sqrt{3}}\right\}$,则A∪B是(  )
A.$(0,\frac{1}{2})$B.(0,4]C.(-∞,-1]∪(4,+∞)D.(-1,4)??

查看答案和解析>>

同步练习册答案