相关习题
 0  251623  251631  251637  251641  251647  251649  251653  251659  251661  251667  251673  251677  251679  251683  251689  251691  251697  251701  251703  251707  251709  251713  251715  251717  251718  251719  251721  251722  251723  251725  251727  251731  251733  251737  251739  251743  251749  251751  251757  251761  251763  251767  251773  251779  251781  251787  251791  251793  251799  251803  251809  251817  266669 

科目: 来源: 题型:选择题

8.如图,已知正方体ABCD-A1B1ClD1的棱长为a,点M为线段AD1的中点.三棱锥D1-BMC的正视图面积等于(  )
A.$\frac{1}{2}$a2B.$\frac{1}{4}$a2C.$\frac{\sqrt{2}{a}^{2}}{4}$D.$\frac{\sqrt{3}{a}^{2}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.下列命题中,错误的是(  )
A.一条直线与两个平行平面中的一个相交,则必与另一个相交
B.平行于同一直线的两个平面平行
C.平行于同一平面的两个平面平行
D.一个平面与两个平行平面相交,交线平行

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{x^2}{{{x^2}+1}}$.
(1)证明对任意实数x,都有f(x)=f(|x|),说明f(x)在(0,+∞)上的单调性并证明之;
(2)记A=f(1)+f(2)+f(3)+f(4)+…+f(100),$B=f(1)+f(\frac{1}{2})+f(\frac{1}{3})+f(\frac{1}{4})+…+f(\frac{1}{100})$,求A+B的值;
(3)若实数x1,x2满足f(x1)+f(x2)>1.求证:|x1x2|>1.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知椭圆的焦点在x轴上,短轴长为$2\sqrt{3}$,离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且$|{MN}|=\frac{7}{2}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,在长方体ABCD-A1B1C1D1中,AB=BC=1,BB1=2,E是棱CC1上的点,且$CE=\frac{1}{4}C{C_1}$.     
(1)求三棱锥C-BED的体积;
(2)求直线CC1与平面BDE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.若点P为双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上的一点,且F1,F2为其焦点,且|PF1|=10,则|PF2|=4或16.

查看答案和解析>>

科目: 来源: 题型:填空题

2.如图边长为2的正方形内部有一块不规则的区域E,若向该图中随机撒100颗豆子,经清点落在E内的有30颗,试估计E的面积为:1.2.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知抛物线C1:y2=2px(p>0)与椭圆C2:x2+2y2=m2(m>0)的一个交点为P(1,t),点F是抛物线C1的焦点.且|PF|=$\frac{3}{2}$.
(Ⅰ)求p,t,m的值;
(Ⅱ)设O为坐标原点,椭圆C2上是否存在点A(不考虑点A为C2的顶点),使得过点O作线段OA的垂线与抛物线C1交于点B,直线AB交y轴于点E,满足∠0AE=∠E0B?若存在,求点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设点A(1,1),点B,C在椭圆x2+3y2=4上,求S△ABC的最大值,并求出取得最大值时直线BC的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.设函数$f(x)=2ax-\frac{a}{x}+lnx$
(1)当$a=-\frac{1}{3}时$,求函数的单调区间
(2)若f(x)在(0,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

同步练习册答案