相关习题
 0  251690  251698  251704  251708  251714  251716  251720  251726  251728  251734  251740  251744  251746  251750  251756  251758  251764  251768  251770  251774  251776  251780  251782  251784  251785  251786  251788  251789  251790  251792  251794  251798  251800  251804  251806  251810  251816  251818  251824  251828  251830  251834  251840  251846  251848  251854  251858  251860  251866  251870  251876  251884  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)写出函数f(x)的最小正周期及其单调递减区间;
(2)求f(x)的解析式;
(3)若将函数f(x)的图象平移Φ个单位,得到一个偶函数的图象,求|Φ|的最小值;
(4)求函数y=f(x-3)+f(2x+7)(x∈[0,2])的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知正方体ABCD-A1B1C1D1,底面ABCD的中心为O,E为A1B1中点,F为CC1中点,如图.
(1)求证:A1O⊥BD;
(2)求证:A1O⊥平面BDF;
(3)求证:平面AD1E⊥平面ACD1

查看答案和解析>>

科目: 来源: 题型:解答题

12.某个公司调查统计它的员工每周参与体育锻炼的时间,样本容量为100人,将调查结果统计为频率分布直方图,如图.我们将每周体育锻炼时间不低于150分钟的人称为“勤于锻炼者”,并将有关性别的信息统计到表中.
 “勤于锻炼者” 非“勤于锻炼者” 合计
 男 25  70
 女   
 合计   
(1)根据图表信息,判断“勒于锻炼者”是否与性别有关?
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}+{n}_{+2}}$
 p(X2≥k) 0.05 0.01
 k 3.841 6.635
(2)在调查中还统计了员工的年龄,发现公司员工的年龄服从正态分布N(35,9),那么从公司中随机选取一名员工,他的年龄在32-38岁之间的概率是多少?(Φ(1)=0.8413)
(3)由于猜测员工的锻炼时间y与年龄x成线性相关,所以根据调查结果进行了线性回归分析,得到回归方程为y=-5x+b,如果员工的平均锻炼时间是110分钟,那么请判断下列说法的正误:
①b=285;
②由于回归方程的斜率是负的,说明年龄越大的员工,每周锻炼时间一定越短;
③由于回归直线方程的斜率是负的,说明两个变量的相关关系是负相关;
④能够算出回归方程,说明两个变旦之间确实是线性相关关系;
⑤回归直线是所有直线中穿过数据点最多的直线;
⑥两个变量是不是成线性相关关系还要看相关系数的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

11.某个停车场有一排共12个车位,从入口开始依次编号是1号停车位、2号停车位、…、12号停车位.早上来了8辆车,随机地停在了其中8个车位.
(1)这时有一辆体型较大的工程车到达停车场,它需要占据两个相邻的车位,求工程车能停进车位的概率;
(2)求没有三辆车相邻的概率;
(3)如果有4辆车离开之后,又有一辆车开进来,停在离入口最近的空车位,记这个车位的编号是η,求η的期望.

查看答案和解析>>

科目: 来源: 题型:解答题

10.n∈N*,证明不等式:$\frac{2-1}{{2}^{2}-1}$+$\frac{{2}^{2}-1}{{2}^{3}-1}$+…+$\frac{{2}^{n}-1}{{2}^{n+1}-1}$>$\frac{n}{2}$-$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.求由抛物线y=x2-2x+5与直线y=x+5所围成的图形的面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$在实数集R上定义,a,b是方程${5}^{{x}^{2}-3x+1}=\frac{1}{5}$的实根,且a>b.
(1)求a,b的值;
(2)判断函数f(x)的奇偶性;
(3)证明函数f(x)在R上是减函数;
(4)若对任意的实数t,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知函数f(x)的图象关于y轴对称,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=x2,则函数f(x)在R上的解析式是f(x)=(x-2k)2,x∈[2k-1,2k+1],k∈Z,函数y=f(x)-log3x的零点有4个.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴建立极坐标系,点P的极坐标为(2,$\frac{π}{6}$),曲线C的极坐标方程为ρ2+2ρsinθ=3.
(1)写出点P的直角坐标及曲线C的直角坐标方程;
(2)若Q为C上的动点,求PQ的中点M到直线l:$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=3+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)距离的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

5.满足A1∪A2={x,y,z}的有序集合对(A1,A2)的个数是(  )
A.6B.8C.24D.27

查看答案和解析>>

同步练习册答案