相关习题
 0  251730  251738  251744  251748  251754  251756  251760  251766  251768  251774  251780  251784  251786  251790  251796  251798  251804  251808  251810  251814  251816  251820  251822  251824  251825  251826  251828  251829  251830  251832  251834  251838  251840  251844  251846  251850  251856  251858  251864  251868  251870  251874  251880  251886  251888  251894  251898  251900  251906  251910  251916  251924  266669 

科目: 来源: 题型:填空题

15.角α的终边经过点P(-2sin60°,2cos30°),则sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设函数$f(x)=\vec m•\vec n$,其中向量$\vec m=({1,2cosx})$,$\vec n=({\sqrt{3}sin2x,cosx})$.
(1)求函数f(x)的最小正周期与单调递增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f( A)=2,b=1,△ABC的面积为$\sqrt{3}$,求△ABC外接圆半径R.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数(a,b,c都是整数),且f(-1)=-2,f(2)<3
(1)求a,b,c的值;
(2)试判断当x<0时f(x)的单调性,并用单调性定义证明你的结论.
(3)若当x<0时2m-1>f(x)恒成立,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知$\frac{3π}{4}$<α<π,tanα+$\frac{1}{tanα}$=-$\frac{10}{3}$.
(1)求tanα的值;
(2)求$\frac{si{n}^{2}(π+α)+2sinαsin(\frac{π}{2}+α)+1}{3sinαcos(\frac{π}{2}-α)-2cosαcos(π-α)}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设命题p:?x∈R,使等式x2+ax+1=0成立;命题q:函数f(x)=x3-ax-1在区间[-1,1]上单调递减,如果命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知函数f(x)满足:①定义域为R;②对任意x∈R,f(x+2)=2f(x);③当x∈[-1,1]时,f(x)=$\sqrt{1-{x^2}}$,若函数g(x)=$\left\{\begin{array}{l}{e^x}({x≤0})\\ lnx({x>0})\end{array}$,则函数y=f(x)-g(x)在区间[-4,4]上零点有8 个.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知函数$f(x)=lg({x+\sqrt{{x^2}+1}})+x$,如果f(1+a)+f(1-a2)<0,则a的取值范围是{a|a<-1或a>2}.

查看答案和解析>>

科目: 来源: 题型:选择题

8.函数g(x)=2x-a(x≤2)的值域为(  )
A.(-∞,4-a]B.(0,4-a]C.[4-a,+∞)D.(-a,4-a]

查看答案和解析>>

科目: 来源: 题型:解答题

7.若数列{an}中,a1=$\frac{1}{3}$,an+1=$\frac{n+1}{3n}$an
(Ⅰ)证明:{$\frac{{a}_{n}}{n}$}是等比数列,并求{an}的通项公式;
(Ⅱ)若{an}的前n项和为Sn,求证Sn$<\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为60°,且|$\overrightarrow{m}$|=1,|$\overrightarrow{n}$|=2,又$\overrightarrow{a}$=2$\overrightarrow{m}$+$\overrightarrow{n}$,$\overrightarrow{b}$=-3$\overrightarrow{m}$+$\overrightarrow{n}$
(Ⅰ)求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦;
(Ⅱ)设$\overrightarrow{c}$=t$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{m}$-$\overrightarrow{n}$,若$\overrightarrow{c}$⊥$\overrightarrow{d}$,求实数t的值.

查看答案和解析>>

同步练习册答案