相关习题
 0  251822  251830  251836  251840  251846  251848  251852  251858  251860  251866  251872  251876  251878  251882  251888  251890  251896  251900  251902  251906  251908  251912  251914  251916  251917  251918  251920  251921  251922  251924  251926  251930  251932  251936  251938  251942  251948  251950  251956  251960  251962  251966  251972  251978  251980  251986  251990  251992  251998  252002  252008  252016  266669 

科目: 来源: 题型:选择题

9.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x,若对于任意的x∈[a,a+2],均有f(x+a)≥f2(x),则实数a取值范围是(  )
A.[1,+∞)B.$[-\frac{1}{2},1)$C.$(-∞,-\frac{3}{2}]$D.(0,+∞)

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知a,b,c,d都是正数,a2+b2+c2=d2,a+b+c=dx,则x的取值范围是(1,$\sqrt{3}$].

查看答案和解析>>

科目: 来源: 题型:解答题

7.设正四棱台ABCD-A′B′C′D′中的上、下底面边长分别为2和4,侧棱长度为2,求这个棱台的高和斜高.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.
(1)求a,b,c的值.
(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.
(3)解关于t的不等式:f(-t2-1)+f(|t|+3)>0.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若f(x)是R上的减函数,且f(x)的图象经过点A(0,4)和点B(3,-2),则当不等式|f(x+t)-1|<3的解集为(-1,2)时,则t的值为1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若方程ax2+(a+1)x+a2-4=0的两根中,一根大于1,另一根小于1,则实数a的取值范围是(-∞,-3)∪(0,1).

查看答案和解析>>

科目: 来源: 题型:选择题

3.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,且f(2)=0,则不等式$\frac{2f(x)+f(-x)}{5x}$<0解集是(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,求圆C的方程;
(2)若点M满足MA=2MO,求点M的轨迹方程;
(3)若圆C上存在点N,使NA=2NO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设函数$y=3sin(ωx+φ)(ω>0,φ∈(-\frac{π}{2},\frac{π}{2}))$的最小正周期为$\frac{π}{2}$,且其图象关于直线$x=\frac{π}{12}$对称,则下列四个结论中正确的编号为②③(把你认为正确的结论编号都填上);   
①图象关于直线$x=-\frac{π}{8}$对称; ②图象关于点$(\frac{5π}{24},0)$对称;③在$[\frac{π}{6},\frac{π}{3}]$上是减函数; ④在$[-\frac{π}{3},0]$上是增函数.

查看答案和解析>>

科目: 来源: 题型:解答题

20.广告公司为某游乐场设计某项设施的宣传画,根据该设施的外观,设计成的平面图由半径为2m的扇形AOB和三角区域BCO构成,其中C,O,A在一条直线上,∠ACB=$\frac{π}{4}$,记该设施平面图的面积为S(x)m2,∠AOB=xrad,其中$\frac{π}{2}$<x<π.
(1)写出S(x)关于x的函数关系式;
(2)如何设计∠AOB,使得S(x)有最大值?

查看答案和解析>>

同步练习册答案