相关习题
 0  251824  251832  251838  251842  251848  251850  251854  251860  251862  251868  251874  251878  251880  251884  251890  251892  251898  251902  251904  251908  251910  251914  251916  251918  251919  251920  251922  251923  251924  251926  251928  251932  251934  251938  251940  251944  251950  251952  251958  251962  251964  251968  251974  251980  251982  251988  251992  251994  252000  252004  252010  252018  266669 

科目: 来源: 题型:选择题

9.已知$\overrightarrow{a}$、$\overrightarrow{b}$为平面向量,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{4}$,$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.正四棱台的上、下底面边长分别为2、4,侧棱长为4,求正四棱台的高和斜高.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在边长为1的正三角形ABC中,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{CA}=λ\overrightarrow{CE}$,若$\overrightarrow{AD}•\overrightarrow{BE}=-\frac{1}{4}$,则λ的值为3.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=ex[2ax2-(1+4a)x+4a+2],其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性并求出其单调区间.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=alnx-ax-3(a≠0),求函数f(x)的单调增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数g(x)=log2(3x-1),f(x)=log2(x+1),
(1)求不等式g(x)≥f(x)的解集;
(2)在(1)的条件下求函数y=g(x)+f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:选择题

3.执行如图所示的程序框图,若输入x的值为4,则输出的结果是(  )
A.1B.$-\frac{1}{2}$C.$-\frac{5}{4}$D.$-\frac{13}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为$y=\sqrt{3}x$,右焦点F(4,0),左右顶点分别为A1,A2,P为双曲线上一点(不同于A1,A2),直线A1P,A2P分别与直线x=1交于M,N两点;
(1)求双曲线的方程;
(2)求证:$\overrightarrow{FM}•\overrightarrow{FN}$为定值,并求此定值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.过点A(-2,3)作直线与抛物线y2=8x在第一象限相切于点B,记抛物线的焦点为F,则直线BF的斜率为(  )
A.$\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.有关正弦定理的叙述:
①正弦定理仅适用于锐角三角形;
②正弦定理不适用于直角三角形;
③正弦定理仅适用于钝角三角形;
④在给定三角形中,各边与它的对角的正弦的比为定值;
⑤在△ABC中,sinA:sinB:sinC=a:b:c.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案