相关习题
 0  252003  252011  252017  252021  252027  252029  252033  252039  252041  252047  252053  252057  252059  252063  252069  252071  252077  252081  252083  252087  252089  252093  252095  252097  252098  252099  252101  252102  252103  252105  252107  252111  252113  252117  252119  252123  252129  252131  252137  252141  252143  252147  252153  252159  252161  252167  252171  252173  252179  252183  252189  252197  266669 

科目: 来源: 题型:选择题

19.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=$si{n^2}\frac{x}{2}$,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若函数f(x)(x∈R)关于$(-\frac{3}{4},0)$对称,且$f(x)=-f(x+\frac{3}{2})$则下列结论:(1)f(x)的最小正周期是3,
(2)f(x)是偶函数,(3)f(x) 关于$x=\frac{3}{2}$对称,(4)f(x)关于$(\frac{9}{4},0)$对称,正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f'(x)+\frac{f(x)}{x}<0$,若a=$\frac{1}{2}$f($\frac{1}{2}$),$b=-\sqrt{2}f(-\sqrt{2})$,c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

16.若函数f(x)=$\sqrt{3}$sin(x+φ)-cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移$\frac{π}{8}$个单位得到函数g(x),则g(x)的解析式可以是(  )
A.$g(x)=2sin(2x-\frac{π}{4})$B.$g(x)=2sin(2x-\frac{π}{8})$C.$g(x)=2sin(\frac{1}{2}x-\frac{π}{4})$D.$g(x)=2sin(\frac{1}{2}x-\frac{π}{16})$

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知点C在以O为圆心的圆弧AB上运动(含端点).$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+2y$\overrightarrow{OB}$(x,y∈R),则$\frac{x}{2}+y$的取值范围是(  )
A.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范
围是(  )
A.m<2B.-2<m<2C.0<m<2D.-2<m<0

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知n∈N*,设不等式组$\left\{\begin{array}{l}x-ny≥0\\ y≤2\\ x≤2n\\ y≥0\end{array}\right.$所表示的平面区域为Dn,记Dn内整点的个数为an(横、纵坐标均为整数的点称为整点).
(Ⅰ)通过研究a1,a2,a3的值的规律,求an的通项公式;   
(Ⅱ)求证:$\frac{1}{{{a_1}^2}}+\frac{1}{{{a_2}^2}}+\frac{1}{{{a_3}^2}}+…+\frac{1}{{{a_n}^2}}<\frac{1}{12}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知Sn是数列{an}的前n项和,满足${S_n}=\frac{1}{2}{n^2}+\frac{3}{2}n$,正项等比数列{bn}的前n项和为Tn,且满足b3=8,T2=6.
(Ⅰ)求数列{an}和{bn}的通项公式;    
(Ⅱ)记${c_n}={a_n}•{b_n},n∈{N^*}$,求数列{cn}的前n项和Gn

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知Πn是正项等比数列{an}的前n项积,且满足a7>1,a8<1,则下列结论正确的是(  )
A.Π7<Π8B.Π15<Π16C.Π13>1D.Π14>1

查看答案和解析>>

科目: 来源: 题型:选择题

10.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大排列顺序是(  )
A.p<m<n<qB.m<p<q<nC.p<q<m<nD.m<n<p<q

查看答案和解析>>

同步练习册答案