相关习题
 0  252077  252085  252091  252095  252101  252103  252107  252113  252115  252121  252127  252131  252133  252137  252143  252145  252151  252155  252157  252161  252163  252167  252169  252171  252172  252173  252175  252176  252177  252179  252181  252185  252187  252191  252193  252197  252203  252205  252211  252215  252217  252221  252227  252233  252235  252241  252245  252247  252253  252257  252263  252271  266669 

科目: 来源: 题型:解答题

13.县政府组织500人参加卫生城市创建“义工”活动,按年龄分组所得频率分布直方图如下图,完成下列问题:

组别[25,30)[30,35)[35,40)[40,45)[45,50)
人数5050a150b
(1)如表是年龄的频数分布表,求出表中正整数a、b的值;
(2)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1、2、3组的各抽取多少人?
(3)在第(2)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

12.为响应国家号召开展“社会实践活动”,某校高二(8)班学生对本县住宅楼房屋销售价格y和房屋面积x的统计有关数据如下:
房屋面积(m)11511080135105
销售价格(万元)24.821.618.429.222
(可能用到的公式:)b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
(Ⅰ)画出数据对应的散点图;
(Ⅱ)设线性回归方程为$\widehat{y}$=bx+a,已计算得b=0.196,$\overline{y}$=23.2,计算$\overline{x}$及a;
(Ⅲ)某同学家人计划在本县购置一套面积为诶120m2的房子,且一次付清,根据(Ⅱ)的结果,估计房屋的销售价格.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知△ABC的周长为20,且顶点B(0,-4),C(0,4),则顶点A的轨迹方程为:$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0).

查看答案和解析>>

科目: 来源: 题型:填空题

10.对于①“很可能发生的”,②“一定发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由大到小排列为(填序号)②①③⑤④.

查看答案和解析>>

科目: 来源: 题型:选择题

9.函数f(x)=x2-x-2,x∈[-5,5],在定义域内任取一点x0,使f(x0)>0的概率是(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知函数f(x)=x6+1,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为(  )
A.21,6,2B.7,1,2C.0,1,2D.0,6,6

查看答案和解析>>

科目: 来源: 题型:选择题

7.若直线y=x+k与曲线x=$\sqrt{1-{y}^{2}}$恰有一个公共点,则k的取值范围是(  )
A.k=-$\sqrt{2}$或-1<k≤1B.k≥$\sqrt{2}$或k≤-$\sqrt{2}$C.-$\sqrt{2}$<k<$\sqrt{2}$D.k=±$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )
A.恰有1个黑球与恰有2个黑球B.至少有一个黑球与都是黑球
C.至少有一个黑球与至少有1个红球D.至多有一个黑球与都是黑球

查看答案和解析>>

科目: 来源: 题型:解答题

5.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)当x∈[1,e]时,求f(x)的最值;
(3)证明:f(x)≤2x-2.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设函数f(x)=x${\;}^{3}-\frac{9}{2}{x}^{2}+6x-a$.
(1)求f(x)的极值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

同步练习册答案