相关习题
 0  252086  252094  252100  252104  252110  252112  252116  252122  252124  252130  252136  252140  252142  252146  252152  252154  252160  252164  252166  252170  252172  252176  252178  252180  252181  252182  252184  252185  252186  252188  252190  252194  252196  252200  252202  252206  252212  252214  252220  252224  252226  252230  252236  252242  252244  252250  252254  252256  252262  252266  252272  252280  266669 

科目: 来源: 题型:填空题

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,动点E和F分别在线段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,当λ=$\frac{2}{3}$时,则$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值为$\frac{58}{9}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x-2x+1+a,则f(-1)=-1.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知x,y∈R+,x+y=1,则$\frac{x}{y}$+$\frac{1}{x}$的最小值为3.

查看答案和解析>>

科目: 来源: 题型:填空题

20.函数f(x)=sinωx•cosωx的最小正周期为2,则ω=$\frac{π}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$满足对任意的实数x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{5}$,$\frac{1}{2}$)D.[$\frac{1}{5}$,1)

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数f(x)=lg(3-x)+$\frac{1}{\sqrt{x-1}}$的定义于为A,函数g(x)=$\frac{2}{x+1}$,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.函数y=-5sin($\frac{π}{6}$-3x)的频率为$\frac{3}{2π}$,,振幅为5,初相为-$\frac{π}{6}$,当x=$\frac{2π}{9}$+$\frac{2kπ}{3}$,k∈Z时,y取最大值为5.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}各项均为正数,且满足a1=1,an+1=2an+1(n∈N*).
(1)求数列{an}的通项公式an
(2)若点Pn(an,yn)(n∈N*)是曲线f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上的列点,且点Pn(an,yn)在x轴上的射影为Qn(an,0)(n∈N*),设四边形PnQnQn+1Pn+1的面积是Sn,求证:n∈N*时,$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+$\frac{1}{3{S}_{n}}$+…+$\frac{1}{n{S}_{n}}$<$\frac{7}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在等差数列{an}中,首项a1=-1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)设cn=(-1)nan,求数列{cn}的前2n项和T2n

查看答案和解析>>

同步练习册答案