相关习题
 0  252105  252113  252119  252123  252129  252131  252135  252141  252143  252149  252155  252159  252161  252165  252171  252173  252179  252183  252185  252189  252191  252195  252197  252199  252200  252201  252203  252204  252205  252207  252209  252213  252215  252219  252221  252225  252231  252233  252239  252243  252245  252249  252255  252261  252263  252269  252273  252275  252281  252285  252291  252299  266669 

科目: 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目: 来源: 题型:选择题

1.方程2x+$\frac{3}{2}$x-3=0的解在区间(  )
A.(0,1)内B.(1,2)内C.(2,3)内D.以上都不对

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图:Rt△ABC中,∠ABC=90°,AB=BC.以AB为直径的⊙O交OC于D,AD的延长线交BC于E,过点D作⊙O的切线DF交BC于F,连OF.⊙C切⊙O于点D,交BC于G.
(1)求证:OF∥AE.
(2)求$\frac{DE}{AD}$的值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列函数中满足在(-∞,0)是单调递增的是(  )
A.f(x)=$\frac{1}{x+2}$B.f(x)=-(x+1)2C.f(x)=1+2x2D.f(x)=-|x|

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知定义在R上的偶函数,f(x)在x≥0时,f(x)=ex+ln(x+1),若f(a)<f(a-1),则a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t为常数).
(1)若k=$\frac{1}{2}$,t=$\frac{1}{4}$,数列{an}是等差数列,求a1的值;
(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,P为椭圆上异于A1,A2的点,PA1和PA2的斜率之积为-$\frac{1}{3}$.以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1,A2,且|A1A2|=4$\sqrt{3}$,该椭圆的离心率为$\frac{{\sqrt{6}}}{3}$,以M(-3,2)为圆心,r为半径的圆与椭圆C交于A,B两点.
(1)求椭圆C的方程;
(2)若A,B两点关于原点对称,求圆M的方程;
(3)若点A的坐标为(0,2),求△ABM的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.(实验班)f(x)=x2+4x+2在区间[t,t+2]上最小值为g(t),求g(t)的表达式.

查看答案和解析>>

科目: 来源: 题型:解答题

13.己知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点和短轴的两个端点都圆x2+y2=1上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为k的直线经过点M(2,0),且与椭圆C相交于A,B两点,试探讨k为何值时,OA⊥OB.

查看答案和解析>>

同步练习册答案