相关习题
 0  252168  252176  252182  252186  252192  252194  252198  252204  252206  252212  252218  252222  252224  252228  252234  252236  252242  252246  252248  252252  252254  252258  252260  252262  252263  252264  252266  252267  252268  252270  252272  252276  252278  252282  252284  252288  252294  252296  252302  252306  252308  252312  252318  252324  252326  252332  252336  252338  252344  252348  252354  252362  266669 

科目: 来源: 题型:解答题

14.通过计算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
将以上各等式两边分别相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
类比上述求法,请你求出13+23+33+…+n3的值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=x2-2ax+2lnx,
(1)若曲线y=f(x)在x=1处的切线与直线y=2x+4平行,试求实数a的值;
(2)若函数f(x)在定义域上为增函数,试求实数a的取值范围;
(3)若y=f(x)有两个极值点x1,x2,且x1<x2,a≥$\frac{5}{2}$.若不等式f(x1)≥mx2恒成立,试求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,已知△ABC中,O为AC中点,∠ABC=90°,P为△ABC所在平面外一点,且PA=PB=PC,证明:平面PAC⊥平面ABC.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,a2+a6=14,S8=64,数列{bn}满足b1+2b2+3b3+…+nbn=(n-1)•2n+1,n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}}{{b}_{n}}$.记数列{cn}的前n项和为Tn,若不等式Tn<λ2-5λ对任意的n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

10.函数y=sin($\frac{π}{2}$-2015x)是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知二次函数f(x)=x2+4x,三次函数g(x)=$\frac{1}{3}$bx3-bx2-3bx+1.
(1)探究;是否存在实数b,使得函数g(x)的图象经过四个象限,若存在,求实数b的取值范围;若不存在,请说明理由.
(2)若m,n是方程lnx-ax=0的两个不同的根,记函数h(x)=f(x)+g(x),当函数h(x)的图象在(0,h(0))处的切线平行于直线y=x+2时,求证:h(mn)>h(e2)(e为自然对数底数)

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知在空间四边形OABC中,OA⊥BC,OB⊥AC,则AB与OC的关系是(  )
A.平行B.夹角为60°C.垂直D.不确定

查看答案和解析>>

科目: 来源: 题型:解答题

7.求证:$\frac{cos(10π+α)sinα}{sin(-α-2π)cos(-π-α)cos(π+α)}$=-$\frac{1}{cosα}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{0}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{c}$|=4,则向量$\overrightarrow{a}$与$\overrightarrow{b}$之间的夹角$<\overrightarrow{a}$,$\overrightarrow{b}>$为(  )
A.30°B.45°C.60°D.以上都不对

查看答案和解析>>

科目: 来源: 题型:解答题

5.画出函数y=|tanx|+tanx的图象,并根据图象求出函数的主要性质.

查看答案和解析>>

同步练习册答案