相关习题
 0  252192  252200  252206  252210  252216  252218  252222  252228  252230  252236  252242  252246  252248  252252  252258  252260  252266  252270  252272  252276  252278  252282  252284  252286  252287  252288  252290  252291  252292  252294  252296  252300  252302  252306  252308  252312  252318  252320  252326  252330  252332  252336  252342  252348  252350  252356  252360  252362  252368  252372  252378  252386  266669 

科目: 来源: 题型:填空题

9.已知圆锥的侧面展开图是圆心角为$\frac{2π}{3}$、半径为6的扇形.则该圆锥的体积为$\frac{{16\sqrt{2}}}{3}π$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.定义:对于数列{xn},如果存在常数p,使对任意正整数n,总有(xn+1-p)(xn-p)<0成立,那么我们称数列{xn}为“p-摆动数列”.
(1)设an=2n-1,${b_n}={q^n}$(-1<q<0),n∈N*,判断数列{an}、{bn}是否为“p-摆动数列”,并说明理由;
(2)已知“p-摆动数列”{cn}满足:${c_{n+1}}=\frac{1}{{{c_n}+1}}$,c1=1.求常数p的值;
(3)设${d_n}={(-1)^n}•(\;2n-1)$,n∈N*,且数列{dn}的前n项和为Sn.求证:数列{Sn}是“p-摆动数列”,并求出常数p的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=2x+b,g(x)=x2+bx+c,其中b、c∈R,设$h(x)=\frac{g(x)}{f(x)}$.
(1)如果h(x)为奇函数,求实数b、c满足的条件;
(2)在(1)的条件下,若函数h(x)在区间[2,+∞)上为增函数,求c的取值范围;
(3)若对任意的x∈R恒有f(x)≤g(x)成立.证明:当x≥0时,g(x)≤(x+c)2成立.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设f(x)=ax2+2x-3,g(x)=x2+(1-a)x-a,M={x|f(x)≤0},P={x|g(x)≥0}.若M∩P=R,则实数a的取值集合为{-1}.

查看答案和解析>>

科目: 来源: 题型:填空题

5.若$sinα=\frac{1}{4}$,且α是第二象限的角.则$sin(α+\frac{3π}{2})$=$\frac{{\sqrt{15}}}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知数列{an}的前n项的和${S_n}={2^n}-a$(a∈R).则a8=128.

查看答案和解析>>

科目: 来源: 题型:填空题

3.函数f(x)=x2-1(x≤-1)的反函数f-1(x)=$-\sqrt{x+1},(x≥0)$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$.
(1)设A($\sqrt{5}$,0),F1,F2分别是曲线C的上,下焦点,求经过点F1且垂直于直线AF2的直线m的参数方程.
(2)已知点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$),设直线l与曲线C的两个交点为M,N,求|PM|•|PN|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到35元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为$y=\left\{\begin{array}{l}40-x({25≤x≤30})\\ 25-0.5x({30<x≤35})\end{array}\right.$.
(年获利=年销售收入-生产成本-投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损.若是盈利,最大利润是多少?若是亏损,最小亏损是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数$f(x)=x+\frac{1}{x}$,
(1)证明f(x)在[1,+∞)上是增函数;
(2)求f(x)在[2,7]上的最大值及最小值.

查看答案和解析>>

同步练习册答案