相关习题
 0  252318  252326  252332  252336  252342  252344  252348  252354  252356  252362  252368  252372  252374  252378  252384  252386  252392  252396  252398  252402  252404  252408  252410  252412  252413  252414  252416  252417  252418  252420  252422  252426  252428  252432  252434  252438  252444  252446  252452  252456  252458  252462  252468  252474  252476  252482  252486  252488  252494  252498  252504  252512  266669 

科目: 来源: 题型:填空题

7.集合P={x|x2-3x+2=0},Q={x|mx-1=0},若P?Q,则实数m的值是{0,$\frac{1}{2}$,1}.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知集A={x|1<x<2},B={x|x<a},满足A?B,则(  )
A.a≥2B.a≤1C.a≥1D.a≤2

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列四组函数中,为同一函数的一组是(  )
A.f(x)=1与g(x)=x0B.f(x)=$\sqrt{x^2}$与g(x)=x
C.f(x)=|-x|与g(x)=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$D.f(x)=$\frac{{{x^2}-1}}{x-1}$与g(x)=x+1

查看答案和解析>>

科目: 来源: 题型:解答题

4.以平面直角坐标系的原点为极点,正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A的极坐标为(2,$\frac{π}{6}$),直线l过点A且与极轴成角为$\frac{π}{3}$,圆C的极坐标方程为ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ)写出直线l参数方程,并把圆C的方程化为直角坐标方程;
(Ⅱ) 设直线l与曲线圆C交于B、C两点,求|AB|•|AC|的值.

查看答案和解析>>

科目: 来源: 题型:选择题

3.给出以下四个判断,其中正确的判断是(  )
A.若“p或q”为真命题,则p,q均为真命题
B.命题“若x≥4且y≥2,则x+y≥6”的逆否命题为“若x+y<6,则x<4且y<2”
C.若x≠300°,则cosx≠$\frac{1}{2}$
D.命题“?x0∈R,${e}^{{x}_{0}}$≤0”是假命题

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知集合M={x|(x+2)(x-2)≤0},N={x|x-1<0},则M∩N=(  )
A.{x|-2≤x<1}B.{x|-2≤x≤1}C.{x|-2<x≤1}D.{x|x<-2}

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知sina-2cosa=0,求下列函数的值.
(1)$\frac{2sina-3cosa}{4sina-9cosa}$.
(2)4sin2a-3sinacosa-5cos2a.

查看答案和解析>>

科目: 来源: 题型:解答题

20.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312
(2)化简:$\frac{{tan(π+a)cos(2π+a)sin(a-\frac{3π}{2})}}{cos(-a-3π)sin(-3π-a)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知函数f(x)=cos$\frac{2π}{3}cos(\frac{π}{2}+2x)$,则函数f(x)满足(  )
A.f(x)的最小正周期是2πB.当x∈$[-\frac{π}{6},\frac{π}{3}]$时,f(x)的值域为$[-\frac{{\sqrt{3}}}{4},\frac{{\sqrt{3}}}{4}]$
C.f(x)的图象关于直线x=$\frac{3π}{4}$对称D.若x1≠x2,则f(x1)≠f(x2

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1、F2,右顶点为M,过点M且斜率为$\frac{\sqrt{2}}{4}$的直线与以F1为圆心,|OF1|为半径的圆相切,又椭圆C过点N($\frac{3}{2}$,$\frac{\sqrt{21}}{4}$).
(1)求椭圆方程;
(2)是否存在过右焦点F2的直线l交椭圆C于A,B两点,且与直线x=4交于点P,使得|PA|,|AB|,|PB|依次成等比数列?若存在,请求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案