相关习题
 0  252423  252431  252437  252441  252447  252449  252453  252459  252461  252467  252473  252477  252479  252483  252489  252491  252497  252501  252503  252507  252509  252513  252515  252517  252518  252519  252521  252522  252523  252525  252527  252531  252533  252537  252539  252543  252549  252551  252557  252561  252563  252567  252573  252579  252581  252587  252591  252593  252599  252603  252609  252617  266669 

科目: 来源: 题型:选择题

9.随机地从区间[0,1]任取两数,分别记为x、y,则x2+y2≤1的概率P=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.某售报亭每天以每份0.5元的价格从报社购进某日报,然后以每份1元的价格出售,如果当天卖不完,剩余报纸以每份0.1元的价格退回报社.售报亭记录近100天的日需求量,绘出频率分布直方图如图所示.若售报亭一天进货数为400份,以X(单位:份,150≤X≤550)表示该报纸的日需求量,Y(单位:元)表示该报纸的日利润.

(Ⅰ)将Y表示为X的函数;
(Ⅱ)在直方图的日需求量分组中,以各组的区间中点值代表该组的各个值,日需求量落入该区间的频率作为日需求量取该区间中点值的概率,求利润Y的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=x3-3a2x-6a2+4a(a>0)有且仅有一个零点x0,若x0>0,则a的取值范围是(  )
A.(0,1)B.(1,2)C.(0,2)D.(0,1]

查看答案和解析>>

科目: 来源: 题型:选择题

6.从数字1、2、3、4、5、6中随机取出3个不同的数字构成一个三位数,则这个三位数能被3整除的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(  )
A.y=|lgx|B.y=2-|x|C.y=|$\frac{1}{x}$|D.y=lg|x|

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{5}$,点P1、P2分别是曲线C的两条渐近线l1、l2上的两点,△OP1P2(O为坐标原点)的面积为9,点P是曲线C上的一点,且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$.
(1)求此双曲线的方程;
(2)设点M是此双曲线C上的任意一点,过点M分别作l1、l2的平行线交l2、l1于A、B两点,试证:平行四边形OAMB的面积为定值.
(3)若点M是此双曲线C上不同于实轴端点的任意一点,设θ=∠F1MF2(F1、F2分别为双曲线C的左、右焦点),且θ∈[$\frac{π}{4}$,$\frac{π}{3}$],试求|MF1|•|MF2|的变化范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知f(x)=$\frac{\sqrt{3}}{2}$cos2ωx-sinωxcosωx+$\frac{\sqrt{3}}{2}$(ω>0)的图象与直线y=m(m>0)相切,并且相邻两切点的横坐标相差2π.
(Ⅰ)求ω和m的值;
(Ⅱ)△ABC中,角A,B,C的对边分别是a,b,c,若角A满足f(A)=-$\frac{\sqrt{3}}{2}$,且a=4,b+c=6,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知抛物线的方程为y=x2,直线l的方程为2x-y-4=0.P为抛物线上的一个动点.
(1)若点P到直线l的距离最短,求点P的坐标:
(2)若动点P到x轴的距离为d1,点P到直线l的距离为d2,求d1+d2的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设f(x)=2cosx(cosx-sinx)+sin2x,x∈R.
(1)求该函数的最小正周期;
(2)请你限定一个闭区间D,求函数y=f(x),x∈D的反函数y=f-1(x),并指出y=f-1(x)的奇偶性、单调性、零点.(不必证明)

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知sin(π-α)-cos(π+α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求值:
(1)sinα-cosα;
(2)sin3(3π-α)+cos3(2π-α).

查看答案和解析>>

同步练习册答案