相关习题
 0  252471  252479  252485  252489  252495  252497  252501  252507  252509  252515  252521  252525  252527  252531  252537  252539  252545  252549  252551  252555  252557  252561  252563  252565  252566  252567  252569  252570  252571  252573  252575  252579  252581  252585  252587  252591  252597  252599  252605  252609  252611  252615  252621  252627  252629  252635  252639  252641  252647  252651  252657  252665  266669 

科目: 来源: 题型:选择题

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{a}$•$\overrightarrow{b}$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{c}$+2$\overrightarrow{a}$|的取值范围是(  )
A.[1,3]B.[2$\sqrt{2}$,3]C.[$\frac{6\sqrt{5}}{5}$,2$\sqrt{2}$]D.[$\frac{6\sqrt{5}}{5}$,3]

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=|x-1|+|x-3a|+3a,x∈R.
(1)当a=1时,求不等式f(x)>7的解集;
(2)对任意m∈R+,x∈R恒有f(x)≥9-m-$\frac{4}{m}$,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

7.经过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点的直线l,交抛物线y2=4x于A、B两点,点A关于y轴的对称点为C,则$\overrightarrow{OB}$•$\overrightarrow{OC}$=-5.

查看答案和解析>>

科目: 来源: 题型:填空题

6.从{1,2,3,4,5,6}中任取两个不同的数m,n(m>n),则$\frac{n}{m}$能够约分的概率为$\frac{4}{15}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=x2+(a+8)x+a2+a-12,且f(a2-4)=f(2a-8),设等差数列{an}的前n项和为Sn,(n∈N*)若Sn=f(n),则$\frac{{S}_{n}-4a}{{a}_{n}-1}$的最小值为(  )
A.$\frac{27}{6}$B.$\frac{35}{8}$C.$\frac{14}{3}$D.$\frac{37}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知a,b∈R,且a+2b=4,则$\sqrt{3}$a+3b的最小值为(  )
A.2$\sqrt{3}$B.6C.3$\sqrt{3}$D.12

查看答案和解析>>

科目: 来源: 题型:选择题

3.等比数列{an}中,an>0,公比q=$\sqrt{2}$,a4•a8=8,则a2•a6•a7=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知i为虚数单位,则|$\frac{2+4i}{1+\sqrt{3}i}$|=(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=|x+1|-|2x-1|.
(1)求不等式f(x)<-1的解集;
(2)若不等式f(x)≤a|x-2|对任意的x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并求出函数f(x)的解析式;
(2)将y=f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象.若关于x的方程g(x)-(2m+1)=0在[0,$\frac{π}{2}$]上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案