相关习题
 0  252524  252532  252538  252542  252548  252550  252554  252560  252562  252568  252574  252578  252580  252584  252590  252592  252598  252602  252604  252608  252610  252614  252616  252618  252619  252620  252622  252623  252624  252626  252628  252632  252634  252638  252640  252644  252650  252652  252658  252662  252664  252668  252674  252680  252682  252688  252692  252694  252700  252704  252710  252718  266669 

科目: 来源: 题型:解答题

6.已知等比数列{an}中a2=4,a5=32
(1)求数列{an}的通项公式;
(2)记Sn=a1+3a2+…+(2n-1)an,求Sn

查看答案和解析>>

科目: 来源: 题型:选择题

5.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是(  )
A.(-$\frac{1}{5}$,1)B.(-∞,-$\frac{1}{5}$)∪(1,+∞)C.[-$\frac{1}{5}$,1)D.(-∞,-$\frac{1}{5}$]∪[1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

4.要得到函数y=3sin(2x+$\frac{π}{3}$)的图象,只需将y=3sin2x图象上所有的点(  )
A.向左平行移动$\frac{π}{3}$个单位长度B.向右平行移动$\frac{π}{3}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知二次函数y=f(x)的图象经过坐标原点,f(x)<0的解集为(0,$\frac{2}{3}$),数列{an}的前n项和为Sn,点(n,Sn)(n∈N+)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N+都成立的最小正整数m.

查看答案和解析>>

科目: 来源: 题型:填空题

2.下列命题中,假命题是(1)(3)(选出所有可能的答案)
(1)有两个面互相平行,其余各个面都是平行四边形的多面体是棱柱
(2)四棱锥的四个侧面都可以是直角三角形
(3)有两个面互相平行,其余各面都是梯形的多面体是棱台
(4)若一个几何体的三视图都是矩形,则这个几何体是长方体.

查看答案和解析>>

科目: 来源: 题型:填空题

1.两个平面可以把空间分成3或4部分,三个平面可以把空间分成4或6或7或8部分.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)二次函数,且满足f(0)=1,f(x+1)-f(x)=2x.
(1)求解析式f(x);
(2)讨论f(x)在[0,a]上的值域.

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=x3B.y=|x|C.y=-x2+1D.y=x

查看答案和解析>>

科目: 来源: 题型:解答题

18.某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:
90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(Ⅰ)请根据数据在答题卡的茎叶图中完成物理成绩统计;
(Ⅱ)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;
数学成绩分组[50,60﹚[60,70﹚[70,80﹚[80,90﹚[90,100﹚[100,110﹚[110,120]
频数       

(Ⅲ)设上述样本中第i位考生的数学、物理成绩分别为xi,yi(i=1,2,3,…,25).通过对
样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).
附:回归直线方程的斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.己知A(2,0),B(0,2),以AB为直径的圆交y轴于M、N两点,则|MN|=2.

查看答案和解析>>

同步练习册答案