相关习题
 0  252531  252539  252545  252549  252555  252557  252561  252567  252569  252575  252581  252585  252587  252591  252597  252599  252605  252609  252611  252615  252617  252621  252623  252625  252626  252627  252629  252630  252631  252633  252635  252639  252641  252645  252647  252651  252657  252659  252665  252669  252671  252675  252681  252687  252689  252695  252699  252701  252707  252711  252717  252725  266669 

科目: 来源: 题型:填空题

16.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2
②f(x1•x2)=f(x1)+f(x2
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
⑤曲线g(x)=x2与曲线f(x)=2x有三个公共点.
其中正确的命题序号是①③④⑤.

查看答案和解析>>

科目: 来源: 题型:解答题

15.“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(理)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正确回答一个问题后,选择继续回答下一个问题的概率是$\frac{1}{2}$,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.
第一扇门第二扇门第三扇门第四扇门
1000200030005000
每扇门对应的梦想基金:(单位:元)
(文)(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知定义在R上的函数f(x)、g(x)满足$\frac{f(x)}{g(x)}={a^x}$,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{10}{3}$,若cn=$\frac{f(n)}{g(n)}$,则数列{ncn}的前n项和Sn=$\frac{3+(2n-1)•{3}^{n+1}}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.(理)在三棱锥S-ABC中,SB⊥BC,SA⊥AC,SB=BC,SA=AC,平面SBC与平面SAC所成的角为60°,且三棱锥S-ABC的体积为$\frac{{9\sqrt{3}}}{2}$,则三棱锥的外接球的半径为(  )
A.3B.1C.2D.4

查看答案和解析>>

科目: 来源: 题型:选择题

12.(理)现有11个保送大学的名额分配给8个班级,每班至少有1个名额,则名额分配的方法共有(  )
A.56种B.112种C.120种D.240种

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知集合A={x|x2-x-6<0},$B=\{x\left|{y=\sqrt{x-m}}\right.\}$.若A∩B≠∅,则实数m的取值范围是(  )
A.(-∞,3)B.(-2,3)C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

10.解不等式:ax2+(a+2)x+1>0.

查看答案和解析>>

科目: 来源: 题型:填空题

9.设F是抛物线C:y2=4x的焦点,过F的直线l交抛物线C于A,B两点,当|AB|=6时,以AB为直径的圆与y轴相交所得弦长是2$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,A为短轴的一个端点,且|OA|=|OF|,△AOF的面积为1(其中O为坐标原点).
(1)求椭圆的方程;
(2)若C,D分别是椭圆长轴的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P,证明:$\overrightarrow{OM}$•$\overrightarrow{OP}$为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知直线$l:y=\sqrt{3}x+2$与圆O:x2+y2=4相交于A,B两点,则|AB|=$2\sqrt{3}$.

查看答案和解析>>

同步练习册答案