相关习题
 0  252596  252604  252610  252614  252620  252622  252626  252632  252634  252640  252646  252650  252652  252656  252662  252664  252670  252674  252676  252680  252682  252686  252688  252690  252691  252692  252694  252695  252696  252698  252700  252704  252706  252710  252712  252716  252722  252724  252730  252734  252736  252740  252746  252752  252754  252760  252764  252766  252772  252776  252782  252790  266669 

科目: 来源: 题型:选择题

17.△ABC的面积为S,α是三角形的内角,O是平面ABC内一点,且满足$\sqrt{2}$$\overrightarrow{OA}$+sinα$\overrightarrow{OB}$+cosα$\overrightarrow{OC}$=$\overrightarrow{0}$,则下列判断正确的是(  )
A.S△AOC的最小值为$\frac{1}{2}$SB.SAOB的最小值为($\sqrt{2}$-1)S
C.S△AOC+S△AOB的最大值为$\frac{1}{2}$SD.S△BOC的最大值为($\sqrt{2}$-1)S

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{2}$bx2+x.
(I)若曲线f(x)在点(1,f(1))处的切线方程为6x-6y-5=0,求a,b的值;
(Ⅱ)当a=-1时,函数f(x)在(1,+∞)上存在单调递增区间,求b的取值范围;
(Ⅲ)当a≥2时,设x1,x2是函数f(x)的两个极值,且f′(x)是f(x)的导函数,如果x2-x1=2,x∈(x1,x2)时,函数g(x)=f′(x)+2(x-x2)的最小值为h(a),求h(a)的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.
(1)求出种群数量y关于时间t的函数表达式;(其中t以年初以来的月为计量单位)
(2)估计当年3月1日动物种群数量.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在△ABC中,tanA=3,面积为10,D为边BC上一动点,CD=λDB.分别作边AB,AC的垂线,垂足分别为E,F,若$\overrightarrow{DE}$•$\overrightarrow{DF}$∈[-$\frac{4}{3}$,-$\frac{9}{8}$],则实数λ范围为[$\frac{1}{3}$,$\frac{1}{2}$]∪[2,3].

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知△ABC满足∠B>∠C,∠A的平分线和过顶点的高线、中线与边BC分别交与点L、H、D.证明∠HAL=∠DAL的充分必要条件是∠BAC=90°.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知f(x)=$\left\{\begin{array}{l}{(6-a)x-4a,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在区间(-∞,+∞)上是单调递增函数,则实数a的取值范围是(  )
A.(1,6)B.[$\frac{6}{5}$,6)C.[1,$\frac{6}{5}$]D.(1,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

11.a=tan(cos(-1))与b=cos(tan(-1))的大小关系为(  )
A.a>bB.a<bC.a=bD.均不对

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知圆O:x2+y2=4和圆C:x2+y2-2x-y-2=0,记两圆的公共弦所在的直线为l.
(I)求直线l的方程.
(Ⅱ)设直线l与x轴的交点为M,过点M任作一条直线与圆O相交于点A,B,是否存在x轴上的定点N,连接AN,BN,使得∠ANM=∠BNM,若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知圆C的圆心在直线3x+y-5=0上,并且经过原点和点A(3,-1).
(Ⅰ)求圆C的方程.
(Ⅱ)若直线l过点P(1,1)且截圆C所得的弦长为$\frac{{2\sqrt{21}}}{3}$,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知实数a,b满足:a2+b2≠0,过点M(-1,0)作直线ax+by+2b-a=0的垂线,垂足为N,点P(1,1),则|PN|的最大值为$\sqrt{5}+\sqrt{2}$.

查看答案和解析>>

同步练习册答案