相关习题
 0  252605  252613  252619  252623  252629  252631  252635  252641  252643  252649  252655  252659  252661  252665  252671  252673  252679  252683  252685  252689  252691  252695  252697  252699  252700  252701  252703  252704  252705  252707  252709  252713  252715  252719  252721  252725  252731  252733  252739  252743  252745  252749  252755  252761  252763  252769  252773  252775  252781  252785  252791  252799  266669 

科目: 来源: 题型:解答题

7.已知函数f(x)=cos2x-2+sin(π-x).
(I)求f($\frac{π}{6}$)的值;
(II)求f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{6}}{3}$,过点R(-1,0)的直线l与椭圆C交于P,Q两点,且$\overrightarrow{PR}$=2$\overrightarrow{RQ}$.(1)当直线l的倾斜角为60°时,求三角形OPQ的面积;
(2)当三角形OPQ的面积最大时,求椭圆C的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,$\overrightarrow{AE}$=$\frac{1}{5}$$\overrightarrow{AB}$,EF∥BC,EF交AC于F,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BF}$可以用$\overrightarrow{a}$,$\overrightarrow{b}$表示的形式是$\overrightarrow{BF}$=$-\overrightarrow{a}$$+\frac{1}{5}$$\overrightarrow{b}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知△ABC中,a=3,b=$\sqrt{6}$,A=60°,
(1)求sinC;
(2)求S△ABC

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=ln(2x),函数g(x)=$\frac{1}{f′(x)}$+af′(x),y=g(x)在x=1处的切线与直线y=-x-5平行.
(1)求a的值.
(2)求直线y=$\frac{3}{4}$x+$\frac{3}{2}$与曲线y=g(x)所围成的图形的面积.
(3)若函数F(x)=f(x)+g(x)+2b在x∈(0,+∞)有且只有两个零点,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.求$\sqrt{{x}^{2}+2x+5}$+$\sqrt{{x}^{2}-8x+20}$的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知z=x2+$\frac{1}{2}$y2+3,其中x,y满足关系式y2=4x,则z的最小值是3.

查看答案和解析>>

科目: 来源: 题型:解答题

20.P是抛物线y2=2x上一点,设M(m,0)(m>0),求|PM|的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.设$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是不共线的两个向量,给出下列四组向量:①$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;②$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$;③$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$与4$\overrightarrow{{e}_{2}}$-2$\overrightarrow{{e}_{1}}$.其中能作为平面内所有向量的一组基底的序号是①②.

查看答案和解析>>

科目: 来源: 题型:填空题

18.Sn=lnx+lnx3+lnx5+…+lnx2n-1=n2lnx.

查看答案和解析>>

同步练习册答案