相关习题
 0  252611  252619  252625  252629  252635  252637  252641  252647  252649  252655  252661  252665  252667  252671  252677  252679  252685  252689  252691  252695  252697  252701  252703  252705  252706  252707  252709  252710  252711  252713  252715  252719  252721  252725  252727  252731  252737  252739  252745  252749  252751  252755  252761  252767  252769  252775  252779  252781  252787  252791  252797  252805  266669 

科目: 来源: 题型:解答题

9.如图,几何体ABCDEF中,四边形ABEF为矩形,ABCD为梯形,平面ABEF⊥平面ABCD,AB∥CD,AB=4,AF=AD=CD=2,AD⊥BD,O为AB的中点.
(1)证明:AD⊥平面BDE;
(2)在线段DE上是否存在点N,使得ON∥平面ADF?说明理由;
(3)求点C到平面BDF的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知四边形ABCD为圆O的内接正方形,且AB=2,EF为圆O的一条直径,M为正方形ABCD边界上一动点,∠EMF=α,α满足sin2α+cos2α=$\frac{1}{4}$,α∈($\frac{π}{2}$,π).
(1)求α的大小;
(2)求△MEF的周长的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知四棱锥P-ABCD底面ABCD是矩形,侧棱PA⊥面ABCD,PA=1,AB=3,BC=4,则点P到直线BD的距离为(  )
A.$\frac{\sqrt{26}}{2}$B.$\frac{13}{5}$C.$\sqrt{10}$D.$\sqrt{17}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,有一纸板为△ABC,AB=24cm,BC=32cm,AC=40cm.它所在的平面α与平面γ平行.在α、γ之间有一个与它们平行的平面β上有一个小孔P,α、β相距40cm,β、γ相距为60cm.经小孔P,△ABC在墙面上成像为△A′B′C′,求像的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

5.下列函数完全相同的是(  )
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目: 来源: 题型:填空题

4.某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是30万元.

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D、E分别在AA1、BB1上,AD=BE=1,F、G分别是B1C1、A1C1的中点,则直线GF与直线DE的距离为(  )
A.$\sqrt{3}$B.$\frac{3\sqrt{6}}{4}$C.$\frac{2\sqrt{5}}{3}$D.$\frac{\sqrt{19}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(Ⅱ)求BC1与平面B1C1F所成的角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

1.三棱锥P-ABC三条侧棱两两垂直,PA=a,PB=b,PC=c,三角形ABC的面积为S,则顶点P到底面的距离是(  )
A.$\frac{abc}{6s}$B.$\frac{abc}{3s}$C.$\frac{abc}{2s}$D.$\frac{abc}{s}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.三棱锥P-ABC中,平面PAC⊥平面ABC,PA=PB=PC=3.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设AB=BC=2$\sqrt{3}$,求直线AC与平面PBC所成角的大小.

查看答案和解析>>

同步练习册答案