相关习题
 0  252613  252621  252627  252631  252637  252639  252643  252649  252651  252657  252663  252667  252669  252673  252679  252681  252687  252691  252693  252697  252699  252703  252705  252707  252708  252709  252711  252712  252713  252715  252717  252721  252723  252727  252729  252733  252739  252741  252747  252751  252753  252757  252763  252769  252771  252777  252781  252783  252789  252793  252799  252807  266669 

科目: 来源: 题型:解答题

9.如图在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=$\sqrt{3}$,BD=CD=1,另一个侧面是正三角形
(1)求证:AD⊥BC;
(2)求二面角B-AC-D的余弦值;
(3)点E在直线AC上,当直线ED与平面BCD成30°角若时,求点C到平面BDE的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上
的点,且AM=AN=1.
(Ⅰ)证明:M,N,C,D1四点共面;
(Ⅱ)求几何体AMN-DD1C的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)当x∈[$\frac{π}{6}$,$\frac{π}{2}$)时,求函数f(x)的取值范围;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在长方体ABCD-A1B1C1D1中,AD=1,AA1=AB=2,点E是线段AB的中点,点M为线段D1C上的动点.,
(Ⅰ)当点M是D1C的中点时,求证直线BM∥平面D1DE;
(Ⅱ)若点M是靠近C点的四等分点,求直线EM与平面D1DE所成角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求B1E与平面AEC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在正三棱柱ABC-A1B1C1中,底面边长为2,异面直线A1B与B1C1所成角的大小为$arccos\frac{{\sqrt{5}}}{10}$.
(1)求侧棱AA1的长.
(2)求A1B与平面A1ACC1所成角的大小(结果用反三角函数表示).

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.
(1)证明:PA∥平面EDB;
(2)证明:平面PAC⊥平面PDB.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,AB是⊙O的直径,点C是⊙O上一点,AD⊥DC于D,且AC平分∠DAB,延长DC交AB的延长线于点P.
(1)求证:PC2=PA•PB;
(2)若3AC=4BC,⊙O的直径为7,求线段PC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在底面是菱形的四棱锥P-ABCD中∠ABC=60°,PA=AC=1,PB=PD=$\sqrt{2}$,若E是侧棱PD的中点
(Ⅰ)证明:PA⊥平面ABCD
(Ⅱ)求直线CE与底面ABCD所成角的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

20.在四棱锥P-ABCD中,PD⊥底面ABCD,四边形ABCD为正方形,且PD=AB=1,$\overrightarrow{BG}$=$\frac{1}{3}$$\overrightarrow{BD}$,则$\overrightarrow{PG}$与底面ABCD的夹角的正弦值为(  )
A.$\frac{2\sqrt{34}}{17}$B.$\frac{3\sqrt{17}}{17}$C.-$\frac{2\sqrt{34}}{17}$D.-$\frac{3\sqrt{17}}{17}$

查看答案和解析>>

同步练习册答案