相关习题
 0  252661  252669  252675  252679  252685  252687  252691  252697  252699  252705  252711  252715  252717  252721  252727  252729  252735  252739  252741  252745  252747  252751  252753  252755  252756  252757  252759  252760  252761  252763  252765  252769  252771  252775  252777  252781  252787  252789  252795  252799  252801  252805  252811  252817  252819  252825  252829  252831  252837  252841  252847  252855  266669 

科目: 来源: 题型:解答题

3.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R
(1)求函数f(x)在[0,$\frac{π}{2}$]上的值域;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f(A)=2,b=1,△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知函数$f(x)=\sqrt{3}sinωx+cosωx({ω>0})$,x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值是$\frac{π}{3}$,则ω=(  )
A.1B.2C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如:2的差倒数是$\frac{1}{1-2}$=-1,-2的差倒数为$\frac{1}{1-(-2)}$=$\frac{1}{3}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推.根据你对差倒数的理解完成下面问题:
(1)a2=$\frac{3}{4}$,a3=4,a4=-$\frac{1}{3}$;
(2)通过(1)中的结果计算a2013的值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设函数f(n)=k(k∈N+),k是π的小数点后的第n位数字,π=3.1415926535…,则$\underset{\underbrace{f(f…f(f(10)))}}{n个f}$(n≥6)等于(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$(x∈R)
(1)求f(x)的单调递减区间;
(2)求f(x)在区间[-$\frac{π}{4},\;\frac{π}{4}$]上的最大值和最小值并写出相应的x值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知f(x)=$\sqrt{3}$sinωx+cosωx(ω>0),x∈R,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为$\frac{π}{3}$,则f(x)的最小正周期为π.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知△ABC内有2005个点,其中任意三点不共线,把这2005个点加上△ABC的三个点共2008个点作为顶点,组成互不相叠的小三角形,则一共可组成小三角形的个数为(  )
A.2004B.2009C.4011D.4013

查看答案和解析>>

科目: 来源: 题型:解答题

16.某校按字母A到Z的顺序给班级编号.按班级编号加01、02、03…给每位学生按顺序定学号.若A-K班级人数从15人起每班递增1名.之后每班按编号顺序递减2名.求第256名学生的学号是多少?

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数$f(x)=sinx-\sqrt{3}cosx$,则函数f(x)的图象的一条对称轴是(  )
A.$x=\frac{5π}{6}$B.$x=\frac{7π}{12}$C.$x=\frac{π}{3}$D.$x=\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°.E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使面A′DE⊥平面BCD,F为线段A′C的中点.
(Ⅰ)求证:BF∥面A′DE;
(Ⅱ)求证:CE⊥平面A′DE
(Ⅲ)若BC=2,求三棱锥A′-DEF的体积.

查看答案和解析>>

同步练习册答案