相关习题
 0  252664  252672  252678  252682  252688  252690  252694  252700  252702  252708  252714  252718  252720  252724  252730  252732  252738  252742  252744  252748  252750  252754  252756  252758  252759  252760  252762  252763  252764  252766  252768  252772  252774  252778  252780  252784  252790  252792  252798  252802  252804  252808  252814  252820  252822  252828  252832  252834  252840  252844  252850  252858  266669 

科目: 来源: 题型:选择题

13.若一个四棱锥的底面是边长为4的正方形,各侧棱都等于3,那么这个四棱锥的高等于(  )
A.1B.$\sqrt{2}$C.5D.$\sqrt{7}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.△ABC中,角A,B,C所对应的边分别为b,b,c,若$\frac{a-c}{b-c}$=$\frac{sinB}{sinA+sinC}$.
(1)求角A的大小;
(2)若△ABC的面积为S,求$\frac{S}{\overrightarrow{AB}•\overrightarrow{AC}}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=cos$(\frac{π}{3}x+\frac{π}{3})-2co{s}^{2}\frac{π}{6}x$
(1)求函数f(x)的周期T;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数g(x)=2lnx+$\frac{m}{x}$-1,f(x)=$\frac{(x-m)^{2}}{lnx}$.
(1)讨论g(x)的单调性;
(2)当0<m<1时,证明x=m是f(x)极大值点;
(3)若f(x)的3个极值点分别是x1,x2,x3,且x1<x2<x3,证明:x1+x3>$\frac{2}{\sqrt{e}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,已知正三棱锥V-ABC,底面积为16$\sqrt{3}$,一条侧棱长为2$\sqrt{6}$,计算它的高和斜高.

查看答案和解析>>

科目: 来源: 题型:解答题

8.P为△ABC所在平面外一点,PO⊥面ABC于O.证明:
(1)若PA=PB=PC,则O为△ABC的外心;
(2)若PA⊥BC,PC⊥AB,则PB⊥AC,且O为△ABC的垂心;
(3)若PA,PB,PC两两垂直,则O为△ABC的垂心;
(4)若P到△ABC各边的距离相等(且O在三角形的内部),则O为△ABC的内心.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知向量$\overrightarrow a=({sin({2x+\frac{π}{6}}),1})$,$\overrightarrow b=({\sqrt{3},cos({2x+\frac{π}{6}})})$,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,A、B、C的对边分别是a、b、c,若$f(A)=\sqrt{3},sinC=\frac{1}{3},a=3$,求b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设函数$f(x)=\sqrt{3}sinxcosx+{sin^2}x+sin({2x-\frac{π}{6}})$.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若$x∈({0,\frac{π}{2}})$,求函数f(x)的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

5.函数f(x)=sinxcosx+sinx+cosx的值域是[-1,$\frac{1}{2}$+$\sqrt{2}$].

查看答案和解析>>

科目: 来源: 题型:选择题

4.将函数$y=\sqrt{3}cosx+sinx,(x∈R)$的图象向右平移θ(θ>0)个单位长度后,所得到的图象关于y轴对称,则θ的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案