相关习题
 0  252685  252693  252699  252703  252709  252711  252715  252721  252723  252729  252735  252739  252741  252745  252751  252753  252759  252763  252765  252769  252771  252775  252777  252779  252780  252781  252783  252784  252785  252787  252789  252793  252795  252799  252801  252805  252811  252813  252819  252823  252825  252829  252835  252841  252843  252849  252853  252855  252861  252865  252871  252879  266669 

科目: 来源: 题型:解答题

3.已知函数f(x)=2alnx-$\frac{1}{2}$ax2+2x,实数a≠0.
(1)若f(x)在区间(1,3)上存在单调递减区间,求实数a的取值范围;
(2)函数f(x)的图象是否存在不同两点A(x1,y1),B(x2,y2),使f(x)在点M(x0,f(x0))处的切线l满足l∥AB(其中x0=$\frac{{x}_{1}+{x}_{2}}{2}$)?若存在,求出A,B的坐标;否则,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

2.设函数f(x)=x3-6x2+16x-5-sinπx,{an}是公差不为零的等差数列,若$\sum_{i=1}^{10}$f(ai)=110,则$\sum_{i=1}^{10}$ai=(  )
A.5B.10C.15D.20

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图所示,已知D,E分别是三棱锥V-ABC的两个侧面VAB,VBC的重心.
(1)证明:DE∥平面ABC;
(2)若该三棱锥的底面ABC是边长为2的正三角形,侧面是以4为腰长的等腰三角形,求三棱锥V-ABC的表面积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.
(1)求证:PB∥平面AEC;
(2)求三棱锥C-PAB的体积.
(3)若F为侧棱PA上一点,且$\frac{PF}{FA}$=λ,则λ为何值时,PA⊥平面BDF.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=2,且满足${a_{n+1}}={S_n}+{2^{n+1}}$(n∈N*).
(Ⅰ)证明数列$\{\frac{S_n}{2^n}\}$为等差数列;
(Ⅱ)求S1+S2+…+Sn

查看答案和解析>>

科目: 来源: 题型:填空题

18.某校高考数学成绩ξ近似地服从正态分布N(100,52),且P(ξ<110)=0.98,P(90<ξ<100)的值为0.48.

查看答案和解析>>

科目: 来源: 题型:选择题

17.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为$\sqrt{3}$,则四面体ABCD外接球的表面积为(  )
A.B.C.D.$\frac{{7\sqrt{7}}}{6}π$

查看答案和解析>>

科目: 来源: 题型:解答题

16.f(x)=x•lg($\frac{1+x}{1-x}$).
(1)证明函数的奇偶性;
(2)判断f(x)在[0,1)上的单调性(只需写出单调性结论,不需要证明过程),并解不等式f(x)>f(2x-1).

查看答案和解析>>

科目: 来源: 题型:解答题

15.某数学老师身高179cm,他爷爷、父亲和儿子的身高分别是176cm、173cm和185cm,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测孙子的身高,已知父亲与儿子身高如表一:
 父亲身高x(cm) 176 173 179
 儿子身高y(cm) 173 179 185
该数学老师提供了三种求回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的方案(每种方案都正确).$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{\;}^{\;}{x}_{i}^{2}-{n\overline{x}}^{2}}$(公式1),$\stackrel{∧}{b}$=$\frac{\sum_{\;}^{\;}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{\;}^{\;}(x{{\;}_{i}-\overline{x}}^{2})}$(公式2);$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$(公式3)
(方案一):借助(公式1)求$\stackrel{∧}{b}$,借助(公式3),求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案二):借助(公式2)求$\stackrel{∧}{b}$,借助(公式3)求$\stackrel{∧}{a}$,进而求回归直线方程;
(方案三):令X=x-173,Y=y-179,则(表一)转化成诶面的(表二).
 X 3 6
 Y-6 0 6
借助(表二)和(公式1)、(公式3),求出$\stackrel{∧}{Y}$=$\stackrel{∧}{b}$X+$\stackrel{∧}{a}$,进而求出y对x的回归直线(y-179)=$\stackrel{∧}{b}$(x-173)+$\stackrel{∧}{a}$.
结合数据特点任选一种方案,求y与x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并根据回归直线预测数学教师的孙子的身高.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为了研究“教学方式”对教学质量的影响,某高中英语老师分别用两种不同的教学方法对入学英语平均分和优秀率都相同的甲乙两个高一新班进行教学(勤奋程度和自觉性相同),以下茎叶图为甲乙两班(每班均20人)学生的英语期末成绩,若成绩不低于125分的为优秀,填写下面的2×2列联表,并判断是否有97.5%的把握认为“成绩优秀与教学方式有关”.

 甲班乙班合计
优秀   
非优秀   
合计   
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{{n}_{+2}}^{\;}}$
附表:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案