相关习题
 0  252713  252721  252727  252731  252737  252739  252743  252749  252751  252757  252763  252767  252769  252773  252779  252781  252787  252791  252793  252797  252799  252803  252805  252807  252808  252809  252811  252812  252813  252815  252817  252821  252823  252827  252829  252833  252839  252841  252847  252851  252853  252857  252863  252869  252871  252877  252881  252883  252889  252893  252899  252907  266669 

科目: 来源: 题型:填空题

16.已知命题p:?x∈[0,3],a≥2x-2,命题q:?x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的值为4.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐近线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交与点P,若|OP|=2,则椭圆离心率为(  )
A.$\sqrt{3}$-1B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)若函数h(x)=f(x+t)的图象关于点(-$\frac{π}{6}$,0)对称,且t∈(0,$\frac{π}{2}$),求t的值;
(2)若锐角△ABC中,角A满足h(A)=1,求($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a)且在该点处切线的倾斜角为$\frac{π}{4}$.
(1)试用a表示b,c;
(2)若f(x)在[$\frac{1}{2}$,+∞)上不单调,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2$\sqrt{3}$cos2$\frac{C}{2}$=sinC+$\sqrt{3}$+1.
(1)求角C的大小;
(2)若a=2$\sqrt{3}$,c=2,求b.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$sin2α=$\frac{4\sqrt{2}}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.给出下列命题:①函数f(x)=4cos(2x+$\frac{π}{3}$)+1的一个对称中心为(-$\frac{5π}{12}$,0);②函数y=f(1-x)与y=f(x-1)的图象关于x=0对称;③命题“?x>0,x2+2x-3>0”的否定是“?x≤0,x2+2x-3≤0”;④若α,β均为第一象限角,且α>β,则sinα>sinβ,其中正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}{x^2}$+kx+1,g(x)=(x+1)ln(x+1)
(1)若函数g(x)的图象在原点处的切线l与函数f(x)的图象相切,求实数k的值;
(2)若对于$?t∈[{0,\sqrt{e}-1}]$,总存在x1,x2∈(-1,4),且x1≠x2满足f(xi)=g(t)(i=1,2),其中e为自然对数的底数,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.篮球比赛时,运动员的进攻成功率=投球命中率×不被对方运动员的拦截率.某运动员在距球篮10米(指到篮圈圆心在地面上射影的距离)以内的投球命中率有如下变化:距球篮1米以内(不含1米)为100%.距离球篮x米处,命中率下降至100%-10%[x].该运动员投球被拦截率为$\frac{90%}{[x]+1}({[x]为实数x的整数部分,如[{3.4}]=3})$.试求该运动员在比赛时:(结果精确到1%)
(1)在三分线(约距球篮6.72米)处的进攻成功率为多少?
(2)在距球篮几米处的进攻成功率最大,最大进攻成功率为多少?

查看答案和解析>>

同步练习册答案