相关习题
 0  252734  252742  252748  252752  252758  252760  252764  252770  252772  252778  252784  252788  252790  252794  252800  252802  252808  252812  252814  252818  252820  252824  252826  252828  252829  252830  252832  252833  252834  252836  252838  252842  252844  252848  252850  252854  252860  252862  252868  252872  252874  252878  252884  252890  252892  252898  252902  252904  252910  252914  252920  252928  266669 

科目: 来源: 题型:解答题

11.将下列曲线的极坐标方程化为直角坐标方程,并说明曲线的形状,
(1)ρ=4sinθ;
(2)(ρ-1)(θ-π)=0;
(3)ρcos(θ-$\frac{π}{3}$)=1;
(4)$θ=\frac{π}{4}$(ρ∈R);
(5)ρcosθ=2sin2θ;
(6)ρ2cosθ-ρ=0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在极坐标系内,已知A(2,$\frac{π}{4}$),B(2,$\frac{5π}{4}$)
(1)求|AB|的长;
(2)若A,B是等边三角形的两个顶点,求另一个顶点C的极坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面PAC⊥平面BDE.
(3)若PO=1,AB=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为(  )
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

科目: 来源: 题型:填空题

7.在极坐标系(ρ,θ)(ρ>0,0<θ<$\frac{π}{2}$)中,曲线ρ=$\sqrt{3}$sinθ与ρ=cosθ的交点的直角坐标系坐标为($\frac{3}{4}$,$\frac{\sqrt{3}}{4}$).

查看答案和解析>>

科目: 来源: 题型:解答题

6.在极坐标系中,已知直线pcosθ+psinθ+a=0与圆p=2cosθ相切,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4,∠PAB=60° 
(I)若PE中点为.求证:AE∥平面PCD;
(Ⅱ)若G是PC的中点,求三棱锥P-BDG的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知在四棱锥S-ABCD中,四边形ABCD是菱形,SD⊥平面ABCD,P为SB的中点,Q为BD上一动点.AD=2,SD=2,∠DAB=$\frac{π}{3}$.
(Ⅰ)求证:AC⊥PQ;
(Ⅱ)当PQ∥平面SAC时,求四棱锥P-AQCD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图1,在菱形ABCD中,AC=2,BD=2$\sqrt{3}$,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.
①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

查看答案和解析>>

科目: 来源: 题型:选择题

2.在极坐标系中,设曲线C1:ρ=2sinθ与C2:ρ=2cosθ的交点分别为A,B,则线段AB的垂直平分线的极坐标方程为(  )
A.ρ=$\frac{1}{sinθ+cosθ}$B.ρ=$\frac{1}{sinθ-cosθ}$C.θ=$\frac{π}{4}$(ρ∈R)D.θ=$\frac{3π}{4}$(ρ∈R)

查看答案和解析>>

同步练习册答案