相关习题
 0  252753  252761  252767  252771  252777  252779  252783  252789  252791  252797  252803  252807  252809  252813  252819  252821  252827  252831  252833  252837  252839  252843  252845  252847  252848  252849  252851  252852  252853  252855  252857  252861  252863  252867  252869  252873  252879  252881  252887  252891  252893  252897  252903  252909  252911  252917  252921  252923  252929  252933  252939  252947  266669 

科目: 来源: 题型:选择题

1.若函数y=f(x)的图象与y=lnx的图象关于y=x对称,则f(1)=(  )
A.1B.eC.e2D.ln(e-1)

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数y=f(x),对任意的两个不相等的实数x1,x2都有f(x1+x2)=f(x1)•f(x2)成立,且f(0)≠0,则f(-2015)•f(-2014)•…f(-1)f(0)f(1)…•f(2014)•f(2015)的值是(  )
A.0B.1C.2006D.20062

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列命题中不正确的是(  )
A.logab•logbc•logca=1(a,b,c均为不等于1的正数)
B.若xlog34=1,则${4^x}+{4^{-x}}=\frac{10}{3}$
C.函数f(x)=lnx满足f(a+b)=f(a)•f(b)(a,b>0)
D.函数f(x)=lnx满足f(a•b)=f(a)+f(b)(a,b>0)

查看答案和解析>>

科目: 来源: 题型:解答题

18.在直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$其中t为参数,0≤α<π,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求直线l与曲线C的普通方程;
(2)求曲线C上的点到直线l上点的最大距离.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知双曲线C以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的顶点为焦点,以椭圆的焦点为顶点.过双曲线C的右焦点的直线l交双曲线于A、B两点.
(1)求双曲线C的标准方程;
(2)若△OAB的面积(其中O为坐标原点)为6,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函数,且函数$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上为增函数,则m的取值范围是$\frac{1}{2}$<m≤1.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(Ⅰ)${\;}_{\;}{0.064^{{-_{\;}}\frac{1}{3}}}-{({-\frac{4}{5}})^0}+{0.01^{\frac{1}{2}}}$
(Ⅱ)${\;}_{\;}2lg2+3lg5+lg\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知f(x)=ax,g(x)=loga|x|(a>0,且a≠1),若f(2014)•g(-2014)<0,则y=f(x)与y=g(x)在同一坐标系内的大致图形是(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知集合A={x∈R|ax2-2x+7=0},且A中只有一个元素,则a的值为(  )
A.0或$-\frac{1}{7}$B.0或$\frac{1}{7}$C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1内有一点P(1,1).
(1)求经过P并且以P为中点的弦所在直线方程;
(2)如果直线l:x=my+4与椭圆E相交于A、B两点,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

同步练习册答案