相关习题
 0  252817  252825  252831  252835  252841  252843  252847  252853  252855  252861  252867  252871  252873  252877  252883  252885  252891  252895  252897  252901  252903  252907  252909  252911  252912  252913  252915  252916  252917  252919  252921  252925  252927  252931  252933  252937  252943  252945  252951  252955  252957  252961  252967  252973  252975  252981  252985  252987  252993  252997  253003  253011  266669 

科目: 来源: 题型:选择题

19.为了得到函数$y=\sqrt{2}cos3x$的图象,可以将函数y=$\sqrt{2}$cos$\frac{3}{2}$x的图象所有点的(  )
A.横坐标伸长到原来的2倍(纵坐标不变)得到
B.横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变)得到
C.纵坐标伸长到原来的2倍(横坐标不变)得到
D.纵坐标缩短到原来的$\frac{1}{2}$(横坐标不变)得到

查看答案和解析>>

科目: 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\frac{\sqrt{3}a}{sinA}=\frac{b}{cosB}$.
(1)求角B的大小;
(2)求$\sqrt{3}$sinA-cosC的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若函数f(x)=$\left\{\begin{array}{l}{x-1,0<x≤2}\\{-1,-2≤x≤0}\end{array}\right.$,g(x)=f(x)+ax,x∈[-2,2]为偶函数,则实数a=-$\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.将函数y=sin(x+$\frac{π}{6}$)的图象上各点的横坐标压缩为原来的$\frac{1}{2}$倍(纵坐标不变),所得函数在下面哪个区间单调递增(  )
A.(-$\frac{π}{3}$,$\frac{π}{6}$)?B.(-$\frac{π}{2}$,$\frac{π}{2}$)?C.(-$\frac{π}{3}$,$\frac{π}{3}$)??D.(-$\frac{π}{6}$,$\frac{2π}{3}$)?

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知多项式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,则a2=(  )
A.32B.42C.46D.56

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知角x的终边上一点坐标为$({sin\frac{5π}{6},cos\frac{5π}{6}})$,则角x的最小值为(  )
A.$\frac{5π}{6}$B.$\frac{5π}{3}$C.$\frac{11π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知$f(x)=acos({\frac{π}{2}x+α})+bsin({\frac{π}{2}x+β})+3$,若f(2014)=4,则f(2016)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知$\overrightarrow{AB}=({2,1})$,$\overrightarrow{CD}=({5,5})$,则$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{-3\sqrt{2}}}{2}$B.$\frac{{3\sqrt{2}}}{2}$C.$\frac{{3\sqrt{15}}}{2}$D.$\frac{{-3\sqrt{15}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知数列{an}中,a2=102,an+1-an=4n,则数列$\left\{{\frac{a_n}{n}}\right\}$的最小项是(  )
A.第6项B.第7项C.第8项D.第9项

查看答案和解析>>

科目: 来源: 题型:选择题

10.△ABC中,角A,B,C所对的边长分别为a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,则△ABC的面积为(  )
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

同步练习册答案