相关习题
 0  252844  252852  252858  252862  252868  252870  252874  252880  252882  252888  252894  252898  252900  252904  252910  252912  252918  252922  252924  252928  252930  252934  252936  252938  252939  252940  252942  252943  252944  252946  252948  252952  252954  252958  252960  252964  252970  252972  252978  252982  252984  252988  252994  253000  253002  253008  253012  253014  253020  253024  253030  253038  266669 

科目: 来源: 题型:解答题

13.设极坐标的极点是直角坐标系的原点,极轴是x轴的正半轴,取相同的单位长度,已知直线1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且α≠kπ+$\frac{π}{2}$,k∈z),圆C的极坐标方程为p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圆C与直线l不相交.
(I)求直线l的普通方程;
(Ⅱ)设曲线C1的参数方程为$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a为参数),点P在曲线C1上.求点P到直线1距离的最小值及取得最小值时点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数)
(Ⅰ)若曲线C1与C2的交点为A,B,求|AB|;
(Ⅱ)已知点M(ρ,θ)在曲线C1上,求ρ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)判断f(x)在[1,+∞)的单调性,并证明你的结论;
(2)求函数在$[{\frac{1}{2},2}]$上最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

10.在空间直角坐标系中,点P(3,1,5)关于yOz平面对称的点的坐标为(  )
A.(-3,1,5)B.(-3,-1,5)C.(3,-1,-5)D.(-3,1,-5)

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.

查看答案和解析>>

科目: 来源: 题型:选择题

8.某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1 000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为(  )
A.500($\sqrt{3}$+1)mB.500mC.500($\sqrt{2}$+1)mD.1000m

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则过点P(ω,φ),且斜率为A的直线方程是(  )
A.y-$\frac{π}{3}$=$\sqrt{3}$(x-2)B.y-$\frac{2π}{3}$=$\sqrt{3}$(x-4)C.y-$\frac{2π}{3}$=2(x-4)D.y-$\frac{2π}{3}$=2(x-2)

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知四棱锥P-ABCD中,AD=2BC,且AD∥BC,点M,N分别是PB,PD中点,平面MNC交PA于Q.
(1)证明:NC∥平面PAB
(2)试确定Q点的位置,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在直三棱柱ABC-A1B1C1中,D,E,F分别为BC,BB1,AA1的中点,求证:平面B1FC∥平面EAD.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知直线L:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).
(1)当α=$\frac{π}{4}$时,求直线L与圆C交点的中点坐标;
(2)证明:直线L与圆C相交,并求最短弦的长度.

查看答案和解析>>

同步练习册答案